矢量推进技术的提出有效改变了水下航行器在低速航行时较弱舵效的困境。由于推力的矢量化,使水下航行器具备直接的推力偏转能力,从而具备优秀的机动能力。本文以并联机器人控制技术出发,基于三台直线电动缸+球笼式万向节的方式,重点讨论矢量控制技术研究。其创新之处在于推进电机无需装载在偏转运动机构中,而可搭载于航行器内部,再将力矩耦合至矢量舵偏转机构上,从而突破了矢量推进电机的体积和重量限制,为大功率矢量推进装置的研制提供了解决方案。仿真结果和实验显示所提出的矢量推进技术稳定可控,可以实现螺旋桨在俯仰和偏航2个自由度方向±15°的偏转,控制精度±0.2°/1°,速度15°/s,从而实现推力的矢量化。
The proposed vector propulsion technology can effectively change the dilemma of weak rudder efficiency of underwater vehicle at low speed. Due to the vectorization of thrust, the underwater vehicle is equipped with direct thrust deflection ability, so that it has excellent maneuvering ability. Based on three linear electric cylinders + ball cage universal joint, this paper will focus on vector control technology. The innovation of this topic is that the propulsion motor does not need to be loaded in the deflection motion mechanism, but can be mounted inside the vehicle, and then the torque is coupled to the vector rudder deflection mechanism, thus breaking the volume and weight limits of the vector propulsion motor, and providing a solution for the development of high-power vector propulsion device. Simulation results and experiments show that the vector propulsion technology in this topic is stable and controllable, and can realize the deflection of the propeller in the two degrees of freedom direction of pitch and yaw of ±15°, so as to achieve the vectorization of thrust, control accuracy of ±0.2°/1° and speed of 15°/s.
2025,47(2): 17-24 收稿日期:2024-3-6
DOI:10.3404/j.issn.1672-7649.2025.02.004
分类号:U664.3
作者简介:罗鹏(1988 –),男,硕士,工程师,研究方向为水下航行器能源电动力和控制技术
参考文献:
[1] 贾东兵. 关于推力矢量控制技术的探讨[J]: 航空动力, 2018(3): 25–27
[2] MICHAEL T N. Conceptual Design of a thrust-Vectoring tailcone for underwater robotics[J]. Massachusetts Institute of Technology, 2012.
[3] 张玉洁, 小型矢量推进式AUV结构设计与研究[D]. 杭州: 中国计量大学, 2020.
[4] 郑炎, AUV两自由度并联矢量推进器设计与研究[D]. 天津: 中国天津大学, 2014.
[5] 刘伟东, 崔淑华. 基于Ansys Workbench的汽车球笼式万向节有限元分析[J], 森林工程, 2009, 25(3): 73-76.
[6] 王 瑞, 吕建良, 钟诗胜, 等. 一种AUV并联型矢量推进机构的姿态控制算法[J], 哈尔滨工业大学学报, 2019, 51(4): 1-5.
[7] 刘嘉, 基于交叉耦合算法的AUV 矢量推进系统设计[J]. 计算机产品与流通, 2019(10): 137.
[8] 陈端滢, 基于 NVH 与传动性能提升的某乘用车传动轴改型研究[D], 武汉:武汉力理大学, 2017.
[9] 谢鲲, 不同沟形七沟道球笼式等速万向节钢球周向力和法向接触力分析[J]. 轴底, 2022(11): 18-22.
[10] 余鑫磊, 汽车球笼式万向节传递效率的研究[D]. 广州: 华南理工大学, 2021.