针对某型喷水推进船舶,提出一种多模式混合切换控制策略,能够实现2种模式的自动切换,提升船舶航行控制的工况自适应性。这项工作需要集成航向保持和路径跟踪2种操作模式,以满足不同工况下的运动控制要求。本文建立基于监督开关控制(SSC)的混合控制框架,分别实现了航向保持PID控制器和路径跟踪滑模控制器,通过监督切换逻辑实现2种控制模式的平稳切换。根据实际航行的目标航迹,结合实船参数进行仿真,仿真结果表明,所提出的混合控制策略具有良好的性能。
This paper proposes a multi-mode hybrid switching control strategy for a certain type of water jet propulsion ship, which can realize the automatic switching of two modes and improve the working condition adaptability of ship navigation control. This work requires the integration of two operation modes, course-keeping and path- tracking, to meet the motion control requirements under different working conditions. This study establishes a hybrid control framework based on supervised switch control (SSC), which implements the course-keeping based on PID controller and the path tracking based on sliding mode controller (SMC), respectively. The smooth switching of the two control modes is achieved through supervised switching logic. Considering the actual navigation target trajectory and combined with the actual ship parameters, simulation results show that the proposed hybrid control strategy has good performance.
2025,47(2): 35-40 收稿日期:2024-3-11
DOI:10.3404/j.issn.1672-7649.2025.02.007
分类号:U675.9
基金项目:国家自然科学基金资助项目(52271367)
作者简介:赵威(1982–),男,硕士,工程师,研究方向为船舶运动仿真与控制
参考文献:
[1] 许维明, 瞿荣泽, 薛国良, 等. 智能船舶系统研究现状及发展趋势[J]. 船舶, 2023, 34(4): 46-55.
[2] 郭景华, 胡平, 李琳辉, 等. 智能车辆横向混合切换控制器设计[J]. 农业机械学报, 2012(2): 1-5.
[3] 杨阳阳, 何志刚, 汪若尘, 等. 智能车辆路径跟踪横向混合控制器设计[J]. 重庆理工大学学报(自然科学版), 2018, 32(11): 7-14.
[4] 王勇, 贾宝柱. 模糊切换型船舶运动PID控制器[J]. 中国航海, 2006, 29(4): 30-34.
[5] TRONG D N, ASGEIR J S, SER T Q. Multi-operational controller structure for station keeping and transit operations of marine vessels[J]. IEEE Transactions on Control Systems Technology, 2008, 16(3): 491-498.
[6] 封培元, 刘义, 范佘明. 基于自动控制的两船并行航行自航模型测试平台[J]. 船舶, 2021, 32(5): 87-93.
[7] 曾薄文.喷水推进水面无人艇的非线性控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
[8] INOUE S, HIRANO M, KIJIMA K. Hydrodynamic derivatives on ship manoeuvring[J]. International Shipbuilding Progress, 1981, 28(1): 112-125.
[9] INOUE S, HIRANO M, KIJIMA K, et al. A practical calculation method[J]. International Shipbuilding Progress, 1981, 28: 207-222.
[10] 孙存楼, 王永生. 喷水推进器推力预报的两种不同方法比较[J]. 船舶力学, 2010, 14(11): 1208-1212.
[11] 蔡佑林, 张恒, 陈刚, 等. 面向中低速船的浸没式喷水推进技术[J]. 船舶, 2023, 34(3): 92-96.
[12] LIU W J, SUI Q M, XIAO H R, et al. Sliding backstepping control for ship course with nonlinear disturbance observer[J]. Journal of Information and Computational Science, 2011, 8(16): 3809-3817.
[13] 刘传才, 缪泉明, 李定, 等. 自治式水下机器人的控制研究[J]. 船舶力学, 1997(1): 67-71.
[14] 周超, 张伟, 李德军, 等. 水下航行器对接过程下的动力学建模与运动仿真研究[J]. 船舶力学, 2023, 27(9): 1327-1336.
[15] 秦梓荷.水面无人艇运动控制及集群协调规划方法研究[D] .哈尔滨: 哈尔滨工程大学, 2018.
[16] 燕聃聃, 文元桥, 肖长诗, 等. 吊舱推进的小型水面无人船航迹控制系统设计[J]. 船海工程, 2017, 46(46): 210-214+21.
[17] TOMERA M. Hybrid switching controller design for the maneuvering and transit of a training ship[J]. International Journal of Applied Mathematics and Computer Science, 2017, 27(1): 63-77.