本文旨在研究新型多级峰窝夹芯结构在舱内爆炸载荷下的动态响应与能量耗散机制。利用AUTODYN中Euler-Lagrange全耦合计算方法验证舱内爆炸计算模型的有效性,并对多级蜂窝夹芯结构的抗爆性能进行有限元分析,探究采用激光选区熔化技术3D打印制备的316 L夹芯层的吸能性,定量研究多级蜂窝夹芯结构各部分结构参数对其抗爆性能的影响规律。结果表明,多级蜂窝夹芯板在舱内爆炸载荷作用下变形过程可分3个阶段并且总结了其6种失效模式。随着上面板和二级蜂窝壁厚的提高,结构强度上升,下面板变形降低并且整体吸能减少。上面板增厚时,上、下面板吸能比例均下降;而二级蜂窝壁厚增大时,下面板吸能比例却上升。此外,芯层高度的增加有助于提升结构抗变形能力,下面板变形减小43.9%,但因易塑性压实,吸能潜力及整体稳定性减弱,总吸能下降19.2%。综上,多级蜂窝夹芯结构的抗爆抗冲击性能得到了明显改善,对抗爆结构的工程设计有一定指导意义。
The purpose of this thesis is to study the dynamic response and energy dissipation mechanism of a new type of multi-level honeycomb sandwich structure under onboard explosion load. The Euler-Lagrange full coupling calculation method in AUTODYN was used to validate the effectiveness of the onboard explosion calculation model and perform finite element analysis on the blast resistance of the multi-level honeycomb sandwich structure. The energy absorption of the 316 L sandwich layer fabricated by laser selective melting technology (3D printing) was investigated, and the influence of various structural parameters of the multi-level honeycomb sandwich structure on its blast-resistant performance was quantitatively studied. The results show that the deformation process of the multi-level honeycomb sandwich panel under internal blast load can be divided into three stages, and six failure modes were summarized. As the thickness of the face sheet and the walls of the second-level honeycomb increased, the structural strength rose, the deformation of the back sheet decreased, and the overall energy absorption was reduced. When the face sheet was thickened, the energy absorption ratio of both the face and back sheets decreased; however, when the wall thickness of the second-level honeycomb increased, the energy absorption ratio of the back sheet actually rose. In addition, increasing the core layer height helped enhance the structure's resistance to deformation, reducing back sheet deformation by 43.9%, but due to the ease of plastic compaction, the potential for energy absorption and overall stability were weakened, resulting in a 19.2% decrease in total energy absorption. In summary, the blast and impact resistance performance of the multi-level honeycomb sandwich structure has been significantly improved, which has certain guiding significance for the engineering design of blast-resistant structures.
2025,47(2): 80-87 收稿日期:2024-3-9
DOI:10.3404/j.issn.1672-7649.2025.02.014
分类号:U668.5
基金项目:国家自然科学基金资助项目(12202329)
作者简介:殷子俊(1999 – ),男,硕士研究生,研究方向为结构安全与可靠性
参考文献:
[1] 李营, 张磊, 杜志鹏, 等. 反舰导弹舱内爆炸作用下舰船结构毁伤机理研究进展[J]. 中国造船, 2018, 59(3): 185-202.
[2] 郑成, 孔祥韶, 周沪, 等. 全封闭舱内爆炸载荷作用下薄板变形研究[J]. 兵工学报, 2018, 39(8): 1582-1589.
[3] FAN L, JIN N, FANG N. Mechanical properties of hierarchical cellular materials. Part I: Analysis[J]. Composites Science & Technology, 2008 , 68 (15-16); 3380-3387.
[4] QIAO J, CHEN C. In-plane crushing of a hierarchical honeycomb[J]. International Journal of Solids & Structures, 2016, 85-86: 57-66.
[5] SUN G, JIANG H, FANG J, et al. Crashworthiness of vertex based hierarchical honeycombs in out-of-plane impact[J]. Materials & Design, 2016, 110: 705-719.
[6] 徐成龙. 多级蜂窝结构的力学性能分析与耐撞性能研究[D]. 长沙: 湖南大学, 2017.
[7] ERHARD B, ULRIKE H, VITUS H, et al. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 2012, 34: 159-169.
[8] 周沪, 岳学森, 孔祥韶, 等. 战斗部舱内爆炸下舰船耦合毁伤数值计算[J]. 中国舰船研究, 2022, 17(5): 241-249+267.
[9] 岳学森, 周沪, 孔祥韶, 等. 舱室内爆载荷燃烧增强效应试验及仿真研究[J]. 中国舰船研究, 2023, 18(4): 223-232.
[10] LI X, KANG R, LI C, et al. Dynamic responses of ultralight all-metallic honeycomb sandwich panels under fully confined blast loading[J]. Composite Structures, 2023, 116791.
[11] 曾钒毓. 基于选区激光熔融技术的316L材料与单胞结构的力学性能研究[D]. 太原: 中北大学, 2022.
[12] 郑成. 舱内爆炸载荷下单层及多层层合板响应特性研究[D]. 武汉: 武汉理工大学, 2018.