为了验证全三维优化设计效果,并探索适用于船用燃气轮机工作特点的叶型,利用扇形涡轮叶栅试验台,针对某船用燃气轮机原型和改型两套涡轮导叶,开展了不同攻角下的扇形叶栅气动性能试验。应用五孔探针、叶片表面静压测量孔,分别测量了叶栅出口流场、不同叶高处叶片型面的压力,分析了导叶出口截面速度场及总压损失分布,导叶根、中、顶这3个截面压力分布,以及节距平均出口气流角、总压损失系数沿叶高分布等。优化前后试验结果对比分析表明:经优化改型后,沿叶高方向导叶表面压力分布更趋均匀化,叶片后部加载特征更加明显,在试验攻角范围内(-10°~+10°)导叶总压损失系数明显减小,且攻角变化对损失影响较小。结果表明,导叶该型是成功的,改进后的导叶对变工况的适应性更加优良,非常适合用于工况变化较为频繁的船用燃气轮机。
Aerodynamic performance tests of a marine gas turbine with two sets of turbine guide vanes were carried out on a sector cascade test rig under different incidences, which is aimed to verify the effects of 3D optimal design and to explore the blade profile suitable for the working characteristics of a marine gas turbine. The flow field at the cascade outlet were measured by five-hole probe. The pressure on the blade profile at different blade heights was measured by the pressure measuring hole on the blade surface. The velocity field and total pressure loss distribution at the guide vane outlet section were analyzed. The pressure distribution at hub, middle and tip guide vane height were shown under different incidences. The pitch average outlet flow angle and total pressure loss distribution along blade height at the guide vane outlet were analyzed. The experimental results show the pressure distribution along the blade height is more uniform and the blade load is optimized from front-loaded to rear-loaded after optimization of guide vane profile. The total pressure loss of the guide vane is significantly reduced within the range of –10° to +10° angles of incidence, and has a better adaptability of incidence. The optimization of guide vane profile was successful. It is very suitable for the marine gas turbine with frequent changes in working conditions.
2025,47(2): 113-119 收稿日期:2024-3-29
DOI:10.3404/j.issn.1672-7649.2025.02.019
分类号:U664.131
基金项目:国家自然科学基金“叶企孙”科学基金资助项目(U2241251)
作者简介:牛夕莹(1983 – ),男,博士,研究员,研究方向为船用及工业中小型燃气轮机
参考文献:
[1] 方忆平, 杨子龙. 对舰船燃气轮机发展的回顾与思考[J]. 国防科技工业, 2017(4): 58-60.
FANG Y P, YANG Z L. Review and thinking on the development of marine gas turbine[J]. Science and Technology Industry of National Defense, 2017(4): 58-60.
[2] 伍赛特. 舰用燃气轮机动力装置的前景展望[J]. 现代制造技术与装备. 2018(12): 204-206.
WU S T. Prospect of gas turbine used as warship power plant[J]. Modern Manufacturing Technology and Equipment, 2018(12): 204-206.
[3] 伍赛特. 燃气轮机设计原则及设计方法研究综述[J]. 中国标准化, 2019(20): 210-213.
WU S T. Review on design principles and methods of gas turbines[J]. Chinese Standardization. 2019(20): 210-213.
[4] 刘顺隆, 冯永明, 刘敏, 等. 船用燃气轮机动力涡轮可调导叶级的流场结构[J]. 热能动力工程, 2005, 20(2): 120-124.
LIU S L, FENG Y M, LIU M, et al. Flow field structure of power turbine with adjustable guide vane stage for Marine gas turbine[J]. Journal of Engineering for Thermal Energy and Power, 2005, 20(2): 120-124.
[5] 徐宁, 汪作心, 李冬, 等. 大功率舰船燃气轮机压气机增容模化设计研究[J]. 推进技术, 2020, 41(11): 2483-2489.
XU N, WANG Z X, LIN D, et al. Study on capacity increasing of high-power marine gas turbine compressor by modeling design[J]. Journal of Propulsion Technology, 2020, 41(11): 2483-2489.
[6] BETTNER J L. Experimental investigation in an angular cascade sector of highly loaded turbine stator blading, performance of a jet-flapped blade[R]. NASA, 1969.
[7] WIERS S H, FRANSSON T H, RÅDEKLINT U, et al. Flow field measurements in a cold flow annular sector turbine cascade test facility and an annular sector cascade test facility operating at near-engine conditions[C]//Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2001, 78507: V001T03A075.
[8] 卢俊菘, 徐文峰, 孙鹏, 等. 导叶/静叶相对周向位置对扇形叶栅流动特性的影响[J]. 中国科技论文, 2019, 14(1): 103-107+120.
LU J S, XU W F, SUN P, et al. Numerical research on the influence of guide vane/stator circumferential position on the flow characteristics of sector cascade[J]. China Science paper, 2019, 14(1): 103-107+120.
[9] 钟兢军, 王威威, 胡书珍. 不同马赫数下非轴对称端壁扇形叶栅流场[J]. 大连海事大学学报, 2017, 43(4): 67-73.
ZHONG J J, WANG W W, HU S Z, Flow fields in an annular cascade with non-axisymmetric endwall at different exit Mach numbers[J]. Journal of Dalian Maritime University, 2017143 (4): 67-73.
[10] 孟福生, 高杰, 郑群, 等. 大子午扩张涡轮扇形叶栅变工况性能实验研究[J]. 推进技术, 2019, 40(5): 986-995.
MENG F S, GAO J, ZHENG Q, et al. Experimental study on large meridional expansion annular sector cascades with variable working conditions[J]. Journal of Propulsion Technology, 2019, 40(5): 986-995.
[11] 李彦静, 杜玉锋, 宋义康, 等. 变几何涡轮可调叶栅过渡态特性研究[J]. 热能动力工程, 2021, 36(10): 126-135.
LI Y J, DU Y F, SONG Y K et al. Research on transition state characteristics of variable geometry turbine adjustable cascade[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(10): 126-135.
[12] 郑国胜, 关瑞卿, 冯小毛, 等. 变几何涡轮平面叶栅流场数值仿真与试验研究[J]. 机械制造与自动化, 2023, 52(1): 141-144.
ZHENG G S, GUAN R Q, FENG X M, et al. Numerical simulation and experimental research for plane cascade of variable geometry turbine[J]. Machine Building & Automation, 2023, 52(1): 141-144.
[13] 唐国庆, 黄康才, 薛伟鹏. 超跨声涡轮扇形叶栅试验流场周期性设计[J]. 燃气涡轮试验与研究, 2018, 31(3): 27-31.
TANG G Q, HUANG K G, XU W P. Periodic design of sector cascade test flow field for supersonic and transonic turbine[J]. Gas Turbine Experiment and Research, 2018, 31(3): 27-31.
[14] 郭伟, 张翔, 马自山, 等. 大膨胀比局部进气涡轮叶栅流场数值模拟研究[J]. 风机技术, 2022, 64(1): 10-16.
GUO W, ZHANG X, MA Z S, et al. Numerical simulation of flow field in partial admission turbine cascade with large expansion ratio[J]. Chinese Journal of Turbomachinery, 2022, 64(1): 10-16.
[15] 李国强, 刘晗, 贾小权, 等. 高负荷涡轮扇形叶栅变攻角气动试验研究[J]. 节能技术, 2019, 37(6): 488-492.
LI G Q LIU H, JIA X Q, et al. Experiment on aerodynamic performance of turbine static cascade[J]. Energy Conservation Technology, 2019, 37(6): 488-492.
[16] 段文华, 陈伟杰, 赵鑫雨, 等. 高马赫数低雷诺数的涡轮叶栅试验[J/OL]. 航空动力学报, 1-12[2024-02-21].
DUAN W H, CHEN W J, ZHAO X Y, et al. Experimental study of low pressure turbine cascade under high Mach number and low Reynolds number conditions[J/OL]. Journal of Aerospace Power, 2024, 1-12.
[17] 朱兰, 张剑, 卿雄杰. 高压涡轮导向器扇形叶栅试验及改进设计验证[J]. 燃气涡轮试验与研究, 2014, 27(5): 19-24.
ZHU L, ZHANG J, QIN X J. Experiment and improved design verification on the sector cascade of high pressure turbine nozzle[J]. Gas Turbine Experiment and Research, 2014, 27(5): 19-24.
[18] 李天华. 几何可调的涡轮扇形叶栅气动性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[19] 张红莲, 康磊, 李海宾, 等. 某涡轮静叶环形叶栅气动性能的试验研究[J]. 热能动力工程, 2019, 34(6): 37-46.
ZHANG H L, KANG L, LI H B, et al. Experiment study on aerodynamic performance of a turbine static annular cascade[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(6): 37-46.
[20] 朱高平, 薛伟鹏, 唐国庆, 等. 探针耙对跨声速环形涡轮叶栅流场的影响[J]. 燃气涡轮试验与研究, 2019, 32(2): 28-33+41.
ZHU G P, XUE W P, TANG G Q, et al. Influence of probe rake on the flow field of transonic annular turbine cascade[J]. Gas Turbine Experiment and Research, 2019, 32(2): 28-33+41.
[21] NIU X Y, LIANG C, JING X M, et al. Experimental investigation of variable geometry turbine annular cascade for marine gas turbines[C]// ASME Turbo Expo 2016, ASME Paper, 2016.
[22] 岳国强, 李殿玺, 韩万金, 等. 两套后部加载叶栅的对比实验研究[J]. 热能动力工程, 2005, 20(2): 125-129.
YUE G Q, LI D X, HAN W J, et al. Comparative experimental study of two sets of rear-loaded cascade[J]. Journal of Engineering for Thermal Energy and Power, 2005, 20(2): 125-129.
[23] 王祥锋. 大功率汽轮机静叶几何变形对气动性能影响的实验研究[D]. 哈尔滨: 哈尔滨工业大学. 2005.
[24] 梁晨, 牛夕莹, 林枫, 等. 某型涡轮动叶气动性能的实验研究[J]. 热能动力工程, 2012, 27(4): 405-410.
LIANG C, NIU X Y, LIN F, et al. Experimental study on aerodynamic performance of a turbine rotor blade[J]. Journal of Engineering for Thermal Energy and Power. 2012, 27(4): 405-410.