针对绿色船舶燃料电池-锂电池混合动力系统存在经济性差、双能量源协同匹配难的问题,研究燃料电池开关和模糊逻辑控制2种不同策略下系统的经济性与可靠性。使用大功率燃料电池模拟器、燃料电池专用直流转换器等模块建立了混合动力系统的模拟实验平台,通过两种策略分别实现对混合动力系统输出功率的管理。实验结果表明,2种策略在优化能量分配上均显示出可行性,进一步比较发现,在船舶典型工况下,复合动力系统稳定运行的时长越久,燃料电池开关策略控制下的氢耗量越低,提高系统的氢燃料经济性。这项工作为后续进一步提升燃料电池船舶混合动力系统运行效率和优化系统性能具有工程指导意义。
Fuel cell-lithium battery hybrid power system of green ships, which have the problems of poor economy and difficult synergistic matching of dual energy sources. This article aims to study the system's economy and reliability under the two different strategies of fuel cell switching and fuzzy logic control. The simulated experimental platform of hybrid power system is established by using high-power fuel cell simulator. And a fuel cell special DC converter and other modules are used to realize the management of the output power of hybrid power system through these two strategies, respectively. The experimental results show that both strategies display feasibility in optimizing energy distribution. Moreover, the longer the hybrid power system runs stably under the ship's typical operating conditions, the lower the hydrogen consumption under the control of the fuel cell switching strategy would be, and it can improve the system's hydrogen fuel economy. This work not only can provide engineering guidance, but also can improve the operating efficiency and optimize the system performance of fuel cell ship hybrid power system in the future.
2025,47(2): 120-126 收稿日期:2024-3-21
DOI:10.3404/j.issn.1672-7649.2025.02.020
分类号:U665.13
基金项目:中央高校基本科研业务费专项资金资助项目(D5000230358)
作者简介:李致朋(1981 – ),男,博士,教授,研究方向为燃料电池混合动力系统及其能量管理策略
参考文献:
[1] 贺亚鹏, 严新平, 范爱龙, 等. 船舶智能能效管理技术发展现状及展望[J]. 哈尔滨工程大学学报, 2021, 42(3): 317-324.
HE Y P, YAN X P, FAN A L, et al. Ship intelligent energy efficiency management technology development status and prospect[J]. Journal of Harbin Engineering University, 2021, 42(3): 317-324.
[2] 王凯, 胡唯唯, 黄连忠, 等. 船舶智能能效优化关键技术研究现状与展望[J]. 中国舰船研究, 2021, 16(1): 181-192+199.
WANG K, HU W W, HUANG L Z, et al. Research status and prospect of key technology of ship intelligent energy efficiency optimization[J]. Chinese Journal of Ship Research, 2021, 16(1): 181-192+199.
[3] WANG K, YAN X P, YUAN Y P, et al. Real-time optimization of ship energy efficiency based on the prediction technology of working condition[J]. Transportation Research Part D-Transport and Environment, 2016, 46: 81-93.
[4] 王新. 氢能燃料电池的成本分析与效益研究[J]. 储能科学与技术, 2023, 12(6): 2040-2041.
WANG X. Cost analysis and benefit study of hydrogen fuel cells[J]. Energy Storage Science and Technology, 2023, 12(6): 2040-2041.
[5] 徐菱翌, 苌国强, 李世安, 等. 船舶燃料电池混合动力系统的研究现状及进展[J]. 舰船科学技术, 2022, 44(17): 96-100
XU L Y, CHANG G Q, LI S A, et al. Research on status and progress of hybrid power systems for marine fuel cell[J]. Ship Science and Technology, 2022, 44(17): 96-100.
[6] SHEN M H. Solid oxide fuel cell-lithium battery hybrid power generation system energy management: A review[J]. International Journal of Hydrogen Energy, 2021, 46(65): 32974-94.
[7] 徐超, 范立云, 陈晨, 等. 船舶混合动力推进系统多目标优化研究[J]. 船舶工程, 2023, 45(9): 79-87.
XU C, FAN L Y, CHEN C, et al. Multi-objective optimisation study of hybrid propulsion system for ships[J]. Ship Engineering, 2023, 45(9): 79-87.
[8] 周荔丹, 许健, 姚钢, 等. 船舶综合能源管理系统研究综述[J]. 电力系统保护与控制, 2022, 50(13): 171-186.
ZHOU L D, XU J, YAO G, et al. Research on integrated energy management system for ships: A review[J]. Power System Protection and Control, 2022, 50(13): 171-186.
[9] XU Y W, WU X L, ZHONG X B, et al. Development of solid oxide fuel cell and battery hybrid power generation system[J]. International Journal of Hydrogen Energy, 2020, 45(15): 8899-914.
[10] AGUIAR P, BRETT D J L, BRANDON N P J J O P S. Feasibility study and techno-economic analysis of an SOFC/battery hybrid system for vehicle applications[J]. Journal of Power Sources, 2007, 171(1): 186-97.
[11] 陈旭冉, 郭燚. 燃料电池-锂电池混合动力船舶的能量管理优化[J]. 舰船科学技术, 2023, 45(7): 106-110.
CHEN X R, GUO Y. Optimisation of energy management for fuel cell-Li battery hybrid ships[J]. Ship Science and Technology, 2023, 45(7): 106-110.
[12] 高建华, 刘永峰, 裴普成, 等. 温度波动对质子交换膜燃料电池的影响[J]. 可再生能源, 2017, 35(08): 1150-1155.
GAO J H, LIU Y F, PEI P C, et al. Effect of temperature fluctuation on proton exchange membrane fuel cells[J]. Research Energy Resources, 2017, 35(08): 1150-1155.
[13] 裴宝浩, 周娟, 于蓬. 氢燃料电池动力技术在船舶动力能效改进的应用[J]. 舰船科学技术, 2022, 44(5): 97-100.
PEI B H, ZHOU J, YU P. Application of hydrogen fuel cell power technology for ship power energy efficiency improvement[J]. Ship Science and Technology, 2022, 44(5): 97-100.
[14] 古启鑫, 潘剑锋, 张倚. 基于TRNSYS的太阳能耦合燃料电池热电联产系统的模拟研究[J]. 可再生能源, 2022, 40(1): 41-47.
GU Q X, PAN J F, ZHANG Y. Simulation study of solar coupled fuel cell cogeneration system based on TRNSYS[J]. Research Energy Resources, 2022, 40(1): 41-47.
[15] 王振, 雷刚. 燃料电池和锂电池在船用领域的对比分析[J]. 船电技术, 2021, 41(2): 18-20+26.
WANG Z, LEI G. Comparative analysis of fuel cells and lithium batteries in marine applications[J]. Marine Electric & Electronic Technology, 2021, 41(2): 18-20+26.
[16] 朱子文, 陈庆鹏, 陈世俨, 等. 基于LabVIEW的燃料电池船舶电力推进监控系统[J]. 舰船科学技术, 2023, 45(13): 100-104.
ZHU Z W, CHEN Q P, CHEN S Y, et al. Fuel cell ship electric propulsion monitoring system based on LabVIEW[J]. Ship Science and Technology, 2023, 45(13): 100-104.
[17] 王博斐, 肖浩哲, 李国豪, 等. 基于控制目标的氢-电混动系统能量管理策略综述[J]. 发电技术, 2023, 44(4): 452-464.
WANG B F, XIAO H Z, LI G H, et al. Energy management strategies for hydrogen-electric hybrid systems based on control objectives: A review[J]. Power Generation Technology, 2023, 44(4): 452-464.
[18] 戴朝华, 史青, 陈维荣, 等. 质子交换膜燃料电池单体电压均衡性研究综述[J]. 中国电机工程学报, 2016, 36(5): 1289-1302.
[19] 皇甫宜耿, 石麒, 李玉忍. 质子交换膜燃料电池系统建模仿真与控制[J]. 西北工业大学学报, 2015, 33(4): 682-687.
[20] SMADI A A, KHOUCHA F, AMIRAT Y, et al. Active Disturbance rejection control of an interleaved high gain DC-DC boost converter for fuel cell applications [J]. Energies, 2019, 34(12): 12396-12406
[21] XIE W J, LUO W G, QIN Y X. Integrated DC/DC converter topology study for fuel cell hybrid vehicles with two energy sources [J]. World Electric Vehicle Journal, 2023, 57(2): 587-597.
[22] BASSAM A M, PHILLIPS A B, TURNOCK S R, et al. An improved energy management strategy for a hybrid fuel cell/battery passenger vessel[J]. International Journal of Hydrogen Energy, 2016, 41(47): 22453-22464.
[23] PAGERIT S, ROUSSEAU A, SHARER P. Global optimization to real time control of HEV power flow: example of a fuel cell hybrid vehicle[C]//Worldwide Battery, Hybrid and Fuel Cell Electric Vehicle Symposium Exhibition, 2005.
[24] 张钰凡, 马睿, 张羽翔, 等. 航空燃料电池推进系统能量管理策略研究综述[J]. 中国电机工程学报, 2023, 43(13): 5012-5025.
ZHANG Y F, MA R, ZHANG Y X, et al. Energy management strategies for aviation fuel cell propulsion systems: A Review[J]. Proceedings of the CSEE, 2023, 43(13): 5012-5025.
[25] HAJIZADEH A, GOLKAR M A J I J O E P, SYSTEMS E. Intelligent power management strategy of hybrid distributed generation system[J]. International Journal of Electrical Power & Energy Systems, 2007, 29(10): 783-795.
[26] 赵勇, 谢金法, 时佳威, 等. 考虑燃料电池耐久性的FCHV复合能量管理策略[J]. 现代制造工程, 2020(4): 70-76+158.
ZHAO Y, XIE J F, SHI J W, et al. Complex energy management strategy for FCHV considering fuel cell durability[J]. Modern Manufacturing Engineering, 2020(4): 70-76+158.
[27] 董冰, 田彦涛, 周长久. 基于模糊逻辑的纯电动汽车能量管理优化控制[J]. 吉林大学学报(工学版), 2015, 45(2): 516-525.
[28] TEKIN M, HISSEL D, PéRA M C, et al. Energy-management strategy for embedded fuel-cell systems using fuzzy logic[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 595-603.
[29] RYU J, PARK Y, SUNWOO M. Electric powertrain modeling of a fuel cell hybrid electric vehicle and development of a power distribution algorithm based on driving mode recognition[J]. Journal of Power Sources, 2010, 195(17): 5735-48.
[30] 彭东恺, 朱礼斯, 韩金刚. 船舶燃料电池-蓄电池混合动力系统能量管理策略及仿真分析[J]. 系统仿真学报, 2014, 26(11): 2797-2802.
[31] GAO D W, JIN Z H, LU Q C. Energy management strategy based on fuzzy logic for a fuel cell hybrid bus[J]. Journal of Power Sources, 2008, 185(1): 311-7.
[32] 张付军, 胡博睿, 张虹. 燃料电池增程式动力系统能量管理策略研究[J]. 北京理工大学学报, 2024, 44(1): 51-59.
ZHANG F J, HU B R, ZHANG H. Study on energy management strategy of fuel cell add-on power system[J]. Journal of Beijing Institute of Technology, 2024, 44(1): 51-59.