在跨空水界面通信中,磁通信技术因其独特优势被广泛关注,但磁场分量的传输特性严重限制了磁通信的通信范围。针对跨空水界面磁通信在大接收深度时信号微弱的问题,提出一种基于双稳态随机共振的2FSK信号处理算法;介绍了双稳态随机共振模型、绝热近似理论以及随机共振的衡量指标,分析了双稳态系统参数对输出信号信噪比的影响,并基于互相关系数这一衡量指标研究了处理大参数2FSK信号的参数调节随机共振方法。结合仿真试验表明,参数调节随机共振结合相关接收方法可以有效处理信噪比低至-24 dB的2FSK信号,相比未经随机共振处理的方法,可以获得5~7 dB的信噪比增益。
In the field of communication between air and water interface, magnetic communication technology has been widely concerned because of its unique advantages. But the communication range of magnetic communication is severely limited by the transmission characteristics of magnetic components. In order to solve the problem of weak signal at large reception depth in the magnetic communication between air and water interface, a 2FSK signal processing algorithm based on bistable stochastic resonance is studied。In this paper, the bistable stochastic resonance model, the adiabatic approximation theory and the measurement index of stochastic resonance are introduced. The influence of bistable system parameters on signal-to-noise ratio (SNR) of output signal is analyzed, the parameterized stochastic resonance method for a 2FSK signal with large parameters is studied based on the correlation index. The simulation results show that the parameter-regulated stochastic resonance combined with correlation reception method can effectively deal with 2FSK signal with low SNR to -24 dB, and the SNR gain of 5 ~ 7 dB can be obtained compared with the method without random resonance processing.
2025,47(2): 152-158 收稿日期:2024-4-5
DOI:10.3404/j.issn.1672-7649.2025.02.025
分类号:TN929.3
作者简介:柴彬彬(1994 – ),男,硕士,讲师,研究方向为声呐系统设计、综合航电设备
参考文献:
[1] 柴彬彬, 张歆. 跨空海界面磁感应通信特性分析及应用研究[J]. 舰船科学技术, 2022, 44(21): 129-136.
CHAI B B, ZHANG X. Research on characteristic analysis and application of air-to-undersea magnetic induction communication[J]. Ship Science and Technoiogy, 2022, 44(21): 129-136.
[2] 赵冠哲, 段再超, 张洁. 海洋环境中舰船通信微弱信号增强技术[J]. 舰船科学技术, 2021, 43(12): 127-129.
ZHAO G Z, DUAN Z C, ZHANG J. Weak signal enhancement technology for ship communication in the marine environment[J]. Ship Science and Technoiogy, 2021, 43(12): 127-129.
[3] CALLAHAM M. Submarine communications[J]. IEEE Communication, 1981, 19(6): 16-25.
[4] WIENER T, KARP S. The role of blue/green laser systems in strategic submarine communications[J]. IEEE Transactions on Communications, 1980, 28(9): 1602-1607.
[5] DOMINGO M C. Magnetic induction for underwater wireless communication networks[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(6): 2929-2939.
[6] GULBAHAR B, AKAN O B. A communication theoretical modeling and analysis of underwater magneto-inductive wireless channels[J], IEEE Transactions on Wireless Communications, 2012, 11(9): 3226-3234.
[7] BENZI R, SUTERA A, VULPIANI A. The mechanism of stochastic resonance[J]. Physics A, 1981, 14: 453-457.
[8] FAUVE S, HESLOT F. Stochastic resonance in a bistable system[J]. Physics Letters, 1983, 97: 5-7.
[9] MCNAMARA B, WIESENFELD K. Theory of stochastic resonance[J]. Physical Review A, 1989, 39(9): 43-47.
[10] 刘进. 基于非线性随机共振的弱信号检测理论研究[D]. 陕西: 西安电子科技大学, 2015.
[11] HU G, NICOLIS G, NICOLIS C. Periodically forced Fokker-Planck equation and stochastic resonance[J]. Physical Review. A, Atomic, Molecular, and Optical Physics, 1990, 42(4): 2030-2041.
[12] GAMMAITONI L, HA¨NGGI P, JUNG P, et al. Stochastic resonance[J]. Reviews of Modern Physics, 1998, 70(1): 223-260.
[13] 柴彬彬. 跨空水界面磁感应通信信号处理[D]. 西安: 西北工业大学, 2019: 46-52.
[14] 冷永刚. 基于Kramers 逃逸速率的调参随机共振机理[J]. 物理学报, 2009, 58(8): 5196-5200.
LENG Y G, Stochastic resonance mechanism based on kramers escape rate[J]. Journal of Physics, 2009, 58(8): 5196-5200.
[15] 杨保国, 田坦, 张殿伦. 双稳态随机共振系统参数选择快速算法及应用[J]. 哈尔滨工程大学学报, 2011, 32(3): 282-287.
YANG B G, TIAN T, ZHANG D L. A fast algorithm for parameter selection of bistable stochastic resonance system and its application [J]. Journal of Harbin Engineering University, 2011, 32(3): 282-287.
[16] LIU J, LI Z, GAO R. A Novel detector based on parameter-induced bistable stochastic resonance for fsk signal processing at low SNR[C]//IEEE International Conference on Computer and Information Technology, 2014: 832–836.
[17] COLLINS, CHOW, IMHOFF. Aperiodic stochastic resonance in excitable systems[J]. Physical Review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1995, 52(4): 3321-R3324.
[18] 胡莺庆. 随机共振微弱特征信号检测理论与方法[M]. 北京: 国防工业出版社, 2012.