针对传统宽带数字波束形成器精度低、主瓣误差大及自导系统中DSP算力紧张的问题,研究一种基于FPGA的鱼雷自导波束形成实现方法。首先介绍最小差异恒定主瓣波束形成算法,通过将优化变量与求解变量相联系,解决了传统算法中波束响应依赖期望主瓣响应的问题,实现由确定到自适应的转化。然后设计基于FPGA的数字波束形成系统结构,完成滤波器模块的建模、综合和实现。最后完成基于FPGA的波束形成实验。通过实验证明, FPGA处理结果与Matlab仿真数据结果误差在10-1量级,信号还原率较高。为波束形成在FPGA硬件设计中的正确性和可靠性提供依据。
A FPGA based torpedo self-directed beam formation implementation technique was examined to address the issues of low accuracy of conventional broadband digital beam former, significant main valve error, and DSP computation tension in self-propelled systems.First, the minimum difference constant main valve beam forming algorithm was introduced. This algorithm solves the problem of the wave response depending on the expected primary valve response in the traditional algorithm, thereby achieving the transformation from determined to adaptive. The optimized variable in the algorithm is linked to the solving variable.The filter module is then fully modeled, synthesized, and implemented through the design of the FPGA based digital beam forming system structure.The experiment on beam creation using FPGA was finally finished.The FPGA processing result and the Matlab simulation data result in error at 10-1 scale, and the signal recovery rate is higher—both of which have been demonstrated experimentally.It offers the foundation for beam formation's precision and dependability in the FPGA hardware design.
2025,47(2): 159-166 收稿日期:2024-3-15
DOI:10.3404/j.issn.1672-7649.2025.02.026
分类号:U675
作者简介:杨子锐(1998 – ),男,硕士研究生,研究方向为水下信号处理
参考文献:
[1] 王剑书, 樊养余, 杜瑞, 等. 改进的基于本征滤波的时域宽带波束形成[J]. 北京航空航天大学学报, 2015, 41(10): 1830-1835.
WANG J S, FAN Y Y, DU R, et al. Improved eigenfilter-based time-domain wideband beamforming[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10): 1830-1835
[2] 祝鹏, 杜金香. 随机错位组合阵列分级波束旁瓣控制方法[J]. 水下无人系统学报, 2021, 29(2): 183-188.
ZHU P, DU J X. Side lobe control method in subarray beamforming based on randomly staggered combination array[J]. Journal of Unmanned Undersea Systems, 2021, 29(2): 183-188.
[3] JIANG F, LI Q H, CHEN X G. Channel smoothing for 802.11ax beamformed MIMO-OFDM[J]. IEEE Communications Letters, 2021, 25 (10): 2-7.
[4] 岳雷, 姜春华, 罗松, 等. 低频宽带多波束声呐系统设计及试验研究[J]. 水下无人系统学报, 2020, 28(1): 097-106.
YUE Lei, JIANG C H, LUO S, et al. Design and experimental research of low-frequency broadband multi-beam sonar system[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 97-106.
[5] 石钰. 矢量拖曳阵MVDR波束形成及本舰干扰抵消方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
[6] 鄢社锋, 马远良. 二阶锥规划方法对于时空域滤波器的优化设计与验证[J]. 中国科学E辑: 信息科学, 2006(2): 153-171.
[7] 柯小梅. 宽带波束形成算法研究[D]. 西安: 西安电子科技大学, 2018.
[8] HU X , PENG M , ZHONG C . Low-complexity beamforming design for IRS-aided communication systems[J]. Science China(Information Sciences), 2022, 65(10): 305-306.
[9] JAFAR N , PAEIZ A , MAHDI N . Feasibility of a novel beamforming algorithm via retrieving spatial harmonics[J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 38-46.
[10] 刘潇, 刘宝蕊, 窦修全, 等. 大规模面阵分级波束形成算法研究[J]. 河北工业科技, 2022, 39(1): 16-23.
LIU X, LIU B R, DOU Q X, et al. Research on hierarchical beamforming algorithm forlarge-scale area array[J]. Hebei Journal of Industrial Science & Technology, 2022, 39(1): 16-23.
[11] SHEN C C, TU K L. Ultrasound DMAS Beamforming for Estimation of Tissue Speed of Sound in Multi-Angle Plane-Wave Imaging[J]. Applied Sciences-basel, 2020, 10(18): 13-17.
[12] SHI Y M, KONAR A, SIDIROPOULOS N D, et al. Learning to Beamform for Minimum Outage[J]. IEEE Transactions on Signal Processing, 2018, 66(19): 3-7.
[13] 林贤洲. 三维声纳系统分级波束形成FPGA设计[D]. 杭州: 浙江大学, 2014.
[14] 李耀南, 罗丁利. 基于FPGA的DBF导向矢量实时算法[J]. 火控雷达技术, 2011, 40(3): 27-31.
LI Y N, LUO D G. DBF based vector-oriented real-time algorithm[J] based on FPGA. Fire control radar technology, 2011, 40 (3): 27-31.
[15] 崔向阳, 刘颖. 基于FPGA的通用DBF模块实现[J]. 电子技术与软件工程, 2016(17): 44+129.
[16] CUI X Y, LIU Y. General DBF module implementation based on FPGA[J]. Electronics Technology and Software Engineering, 2016 (17): 44+129.
[17] 吴高奎. 数字信号处理算法的FPGA高速实现研究[D]. 成都: 电子科技大学, 2011.