近年来,调距桨轴内油管的故障频发已成为影响大型舰船推进系统可靠性的关键因素,深入研究油管结构的振动机理对于理解故障成因、制定预防措施至关重要,但目前在此领域的研究相对缺乏。以调距桨轴内油管为研究对象,提出一种对复杂的流-固耦合结构附加质量的计算方法,能够综合考虑流体压力与流体作用对结构的影响,并运用Hypermesh与Abaqus软件进行联合仿真,对油管结构进行精细化建模与计算。研究结果表明,这种方法在舰船轴系运转频率范围内能准确模拟声固耦合算法的结果,满足调距桨轴内油管振动分析范围;并对调距桨轴内油管支承结构优化布置和流体压力对管壁的作用进行研究,得出了调距桨轴内油管振动的规律,为调距桨轴内油管设计提供参考。
In recent years, frequent failures of the oil pipes within controllable pitch propeller (CPP) shafts have become a critical factor affecting the reliability of large ship propulsion systems. In-depth research on the vibration mechanisms of oil pipe structures is essential for understanding the causes of these failures and establishing preventive measures, yet there is a relative scarcity of research in this area. Focusing on the oil pipes within CPP shafts, a method for calculating the added mass of complex fluid-structure interaction structures has been proposed. This method takes into account the effects of fluid pressure and fluid action on the structure, and utilizes Hypermesh and Abaqus software for a combined simulation, enabling a detailed modeling and calculation of the oil pipe structure. The research results indicate that this method can accurately simulate the results of the acoustic-structure coupling algorithm within the operating frequency range of ship shaft systems, meeting the vibration analysis requirements for oil pipes within CPP shafts. Additionally, the study investigates the optimization of the supporting structure layout for the oil pipes within CPP shafts and the effects of fluid pressure on the pipe walls, revealing the vibration patterns of these oil pipes. This research provides valuable insights for the design of oil pipes within CPP shafts.
2025,47(3): 6-12 收稿日期:2024-4-19
DOI:10.3404/j.issn.1672-7649.2025.03.002
分类号:U664.21
基金项目:国家自然科学基金重点基金项目(51839005);高技术船舶科研专项资助项目(K24532-1-2)
作者简介:武于哲(1998-),男,硕士研究生,研究方向为船舶动力装置性能分析及振动噪声控制
参考文献:
[1] 滕正之, 王景炎. 国外调距桨的现状与水平[J]. 国外舰船技术(特辅机电设备类), 1979(10): 1?16.
TENG Z Z, WANG J Y. The current status and level of foreign controllable pitch propellers[J]. Foreign Ship Technology (Special Auxiliary Mechanical and Electrical Equipment Category), 1979(10): 1?16.
[2] 任建亭, 姜节胜. 输流管道系统振动研究进展[J]. 力学进展, 2003(3): 313?324.
REN J T, JIANG J S. Research progress on vibration of fluid conveyance pipeline systems[J]. Advances in Mechanics, 2003(3): 313?324.
[3] ZHU Z L, LIANG Z, HU Y, Buckling behavior and axial load transfer assessment of coiled tubing with initial curvature in an inclined well [J]. Journal of Petroleum Science and Engineering, 2019, 173: 136?145.
[4] YU J X, HAN M X, DUAN J H, et al. The research on the different loading paths of pipes under combined external pressure and axial tension[J]. International Journal of Mechanical Sciences, 2019, 160: 219?228.
[5] TUSSELING A S, LAVOOIJ C S W. Fluid-structure interaction in liquid-filled piping systems[J]. Journal of Fluids and Structures, 1991, 5(5): 573?595.
[6] WALKER J S, PHILLIPS J W. Pulse propagation in fluid-filled tube[J]. Journal of Applied Mechanics, 1977, 44: 31?35.
[7] WIGGERT D, OTWELL R, HATFIELD F. The effect of elbow restraint on pressure transients[J]. Journal of Fluids Engineering, 1985, 107: 402?406.
[8] WIGGERT D, HATFIELD F, STUCKENBRUCK S. Analysis of liquid and structural transients in piping by the method of characteristics[J]. Journal of Fluids Engineering, 1987, 109: 161?165.
[9] DAI H L, WANG L. Vibration analysis of three-dimensional pipes conveying fluid with consideration of steady combined force by transfer matrix method[J]. Applied Mathematics and Computation, 2012, 2019(5): 2453?2464.
[10] LESMEZ M W, WIGGERT D C, HATFIELD F. Modal Analysis of vibrations in liquid-filled piping systems[J]. Journal of Fluids Engineering, 1990, 112(3): 311?318.
[11] 吴江海, 尹志勇, 孙玉东, 等. 基于传递矩阵法的U型管流固耦合特性研究[J]. 应用力学学报, 2021, 38(5): 1890?1894.
WU J H, YIN Z Y, SUN Y D, et al. Study on fluid-structure interaction characteristics of u-shaped pipes based on transfer matrix method[J]. Journal of Applied Mechanics, 2021, 38(5): 1890?1894.
[12] EVERSTINE G C. Finite element formulatons of structural acoustics problems[J]. Computers & Structures, 1997, 65(3): 307?321.
[13] RODRIGUEZ C G, FLORES P, PIERART F G, et al. Capability of structural–acoustical FSI numerical model to predict natural frequencies of submerged structures with nearby rigid surfaces[J]. Computers & Fluids, 2012, 64: 117?126.
[14] ZHANG X. M. Parametric studies of coupled vibration of cylindrical pipes conveying fluid with the wave propagation approach[J]. Computers & Structures, 2002, 80(3/4): 287?295.
[15] HUANG Y M, LIU Y S, LI B H. Natural frequency analysis of fluid conveying pipeline with different boundary conditions [J]. Nuclear Engineering and Design, 2010, 240(3): 461?467.
[16] 姜峰, 郑运虎, 梁瑞, 等. 海洋立管湿模态振动分析[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 159?166.
JIANG F, ZHENG Y H, LIANG R, et al. Wet modal vibration analysis of marine riser[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(5): 159?166.
[17] JING W C, YONG Y L, XIN L, et al. Numerical theory and method on the modal behavior of a pump-turbine rotor system considering gyro-effect and added mass effect [J]. Journal of Energy Storage. 2024, 85.
[18] 谈熙明, 高付海, 齐敏, 等. 复杂流域中异型结构附加质量精细化计算方法研究[J]. 核动力工程, 2023, 44(4): 100?106.
TAN X M, GAO F H, QI M, et al. Research on the refinement calculation method of added mass for irregular structures in complex basins[J]. Nuclear Power Engineering, 2023, 44(4): 100?106.
[19] 贾子琛, 孙哲, 赵禹, 等. 水动力对海冰-结构物相互作用影响的研究[J]. 中国造船, 2024, 65(1): 190?201.
JIA Z C, SUN Z, ZHAO Y, et al. Study on the influence of hydrodynamics on the interaction between sea ice and structural objects[J]. Chinese Shipbuilding, 2024, 65(1): 190?201.
[20] 国标GB/T 33582-2017机械产品结构有限元力学分析通用规则[S]. 北京: 中国标准出版社, 2017.