钛合金球柱结合壳形成的耐压结构在海洋资源开发装备等的应用上不断增加。一般钛合金球柱结合壳由半球壳和柱壳焊接加工而成,其焊接残余应力可能会对耐压结构的强度产生影响,易导致结构的安全性问题。本文首先基于热弹塑性基本原理,使用Ansys APDL二次开发程序,将给定温度法和生死单元法结合,计算钛合金对接焊平板焊后残余应力,并将其与相关文献进行比较研究;在两者结果较为一致的基础上,采用同样的方法研究钛合金球柱结合壳环焊缝残余应力,同时对其进行焊后热处理数值仿真。结果表明,钛合金球柱结合壳内壳表面横向残余应力呈双峰分布,而外壳表面具有较大横向压应力,内外壳表面均具有较大的纵向残余应力。焊后热处理能大程度消除焊后残余应力。研究内容对工程中球柱形耐压结构的设计制造具有指导意义。
The pressure structure formed by titanium alloy sphere-cylinder combined shell is increasing in the application of marine resource development equipment. Generally, the titanium alloy spherical-cylinder combined shell is made by welding the hemispherical shell and the cylindrical shell. The welding residual stress may affect the strength of the pressure structure and easily bring potential safety hazard to the structure. In this paper, based on the basic theory of thermal elastic plasticity, Ansys APDL secondary development program is used to combine the given temperature method with the birth and death element method to numerically simulate the residual stress of titanium alloy butt welded thick plate, and then this paper compare it with the relevant literature test results. On the basis of the similar conclusions, the residual stress of the circumferential weld of the titanium alloy sphere-cylinder combined shell was studied by the same method, and the post-weld heat treatment was simulated. The results show that the transverse residual stress of the inner shell of the titanium alloy sphere-cylinder combined shell is bimodal distribution, with large longitudinal residual stress. The surface of the inner and outer shells has large longitudinal residual stress. Post-weld heat treatment can greatly eliminate post-weld residual stress. The research content of this paper has guiding significance for the design and manufacture of spherical column pressure structure in engineering.
2025,47(3): 13-19 收稿日期:2024-3-7
DOI:10.3404/j.issn.1672-7649.2025.03.003
分类号:U671
基金项目:国家自然科学基金资助项目(52171312);水路交通控制全国重点实验室开放课题资助项目(QZ2022-Y012)
作者简介:李天祎(1998-),女,硕士研究生,研究方向为船舶与海洋结构物强度
参考文献:
[1] 肖攀, 苗志飞, 钱勇, 等. 基于Ansys的钛合金电子束焊缝形貌预测及验证[J]. 机械制造文摘(焊接分册), 2011(5): 27?32.
XIAO P, MIAO Z F, QIAN Y, et al. Prediction and verification of weld profile in electron beam welding of titanium alloy based on Ansys[J]. Welding Digest of Machinery Manufacturing, 2011(5): 27?32.
[2] 刘水清, 潘广善. 钛合金残余应力值随时间重分布的数值分析[J]. 船舶力学, 2017, 21: 375?380.
LIU S Q, PAN G S. Numerical analysis of welding residual stress redistribution with time in titanium alloy[J]. Journal of Ship Mechanics, 2017, 21: 375?380.
[3] 徐磊, 黄小平, 王芳. 焊接残余应力对深潜器耐压球壳承载能力的影响[J]. 船舶力学, 2017, 21(7): 864?872.
XU L, HUANG X P, WANG F. Effect of welding residual stress on the ultimate strength of spherical pressure hull[J]. Journal of Ship Mechanics, 2017, 21(7): 864?872.
[4] RASTI A, SATTARIFAR I, SALEHI M, et al. Stress analysis of welded joints in internal stiffener rings in an aluminum cylinder[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 230(1).
[5] NAEEM U, EJAZ M Q, I HAMMOUDA M M. Analysis of weld-induced residual stresses and distortions in thin-walled cylinders[J]. Journal of Mechanical Science and Technology, 2009, 23: 1118?1131.
[6] 洪江波, 杜仲民, 侯海量, 等. 大型耐压壳环焊缝焊接残余应力实验研究[J]. 船舶工程, 2006(5): 14?18.
HONG J B, DU Z M, HOU H L, et al. Experimental study of residual stress in girth weld of large pressure hull[J]. Ship Engineering, 2006(5): 14?18.
[7] 宋庆军. 大厚度TC4ELI钛合金EBW质量控制及球壳变形预测[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[8] WEN Y B, GENG LY, GONG J M. Finite element analysis of welding residual stress of the ultra-thick 13MnNiMoR steel cylinder of a large eo reactor made in China [C]//Proceedings of the ASME 2013 Pressure Vessels and Piping Conference, 2013.
[9] KEKE G, YUE Y, QIANG X, et al. Analysis of residual stresses and distortions of a titanium alloy ring-stiffened cylindrical shell[J]. Materials Testing, 2022, 64(1).
[10] 昌满. 深海耐压球壳开孔区域残余应力的调整方法研究[D]. 镇江: 江苏科技大学, 2018.
[11] 初雅洁. 焊接有限元技术[M].北京: 化学工业出版社, 2020.
[12] 沙宇程. 热处理对钛合金耐压球壳焊接残余应力影响研究[D]. 镇江: 江苏科技大学, 2021.
[13] 彭慧芬. 塑性力学与Ansys应用[M]. 北京: 石油工业出版社, 2020.
[14] 宋卫东. 塑性力学[M]. 北京: 科学出版社, 2017.
[15] 薛小怀. 工程材料与焊接基础[M]. 上海: 上海交通大学出版社, 2019.
[16] 石科学, 张浩, 苟曼曼. 钛合金薄板蠕变性能测试影响因素研究[J]. 四川有色金属, 2020(136): 2?3+14.
SHI K X, ZHANG H, GOU M M. Analysis of influence factors on creep test of titanium alloy sheet[J]. Sichuan Nonferrous Matels, 2020(136): 2?3+14.
[17] NORTON F H. The creep of steel at high temperature[M]. London: McGraw-Hill, 1929.
[18] 孟祥军, 陈春和, 余巍, 等. 几种海洋工程用钛合金及其应用[J]. 中国造船, 2004, 45(z1): 38?43.
MENG X J, CHEN C H, YU W, et al. Several titanium alloys for marine engineering and their applications[J]. Chinese Shipbuilding, 2004, 45(z1): 38?43.
[19] 黄伯云, 李成功, 石力开, 等. 中国材料工程大典. 第四卷, 有色金属材料工程(上册)[M] . 北京: 化学工业出版社, 2005.
[20] LIU C, LUO Y, YANG M, et al. Effects of material hardening model and lumped-pass method on welding residual stress simulation of J-groove weld in nuclear RPV [J]. Engineering Computations (Swansea, Wales), 2016, 33(5): 1435?1450.
[21] LIU C, LUO Y, YANG M, et al. Three-dimensional finite element simulation of welding residual stress in RPV with two J-groove welds[J]. Welding in the World, 2017, 61(1): 151?160.
[22] 孙凯祥. 深海载人潜水器耐压球壳赤道焊缝残余应力研究[D]. 镇江: 江苏科技大学, 2020.
[23] 胡美娟. 12 mm厚TC4钛合金板电子束焊接温度场应力场三维有限元数值模拟[D]. 西安: 西北工业大学, 2005.
[24] 胡宝. TC4钛合金薄壁件激光焊接数值模拟研究[D]. 天津: 天津大学, 2014.
[25] 黄雷雷. 钛合金筒件真空电子束焊接变形数值模拟及控制[D]. 哈尔滨: 哈尔滨工业大学, 2009.
[26] 王庆丰, 徐海涛, 祁斌, 等. 考虑焊接残余应力的T型板疲劳强度研究[J]. 舰船科学技术, 2022, 44(4): 1?5.
WANG Q F, XU H T, QI B, et al. Research on fatigue strength of T-shaped plate considering welding residual stress[J]. Ship Science and Technology, 2022, 44(4): 1?5.
[27] LU W L, SUN J L, SU H, et al. Experimental research and numerical analysis of welding residual stress of butt welded joint of thick steel plate[J]. Case Studies in Construction Materials, 2023, 18.
[28] LIU C, WU B, ZHANG J X. Numerical investigation of residual stress in thick titanium alloy plate joined with electron beam welding[J]. Metallurgical and Materials Transactions, 2010, 41B(5).
[29] XIE P, ZHAO H Y, WU B, Gong S L. Using finite element and contour method to evaluate residual stress in thick Ti-6Al-4V alloy welded by electron beam welding[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(7).
[30] 姜云禄, 余陈, 陈静, 等. 钛合金窄间隙TIG焊试板热处理前后表面残余应力研究[J]. 航空制造技术, 2018, 61(8): 62?66.
JIANG Y L, YU C, CHEN J, et al. Study on surface residual stress of titanium alloy narrow gap TIG welding test plate before and after heat treatment[J]. Aviation Welding Technology, 2018, 61(8): 62?66.
[31] 王伟, 李华冠, 杨吟飞, 等. Ti6Al4V钛合金薄板退火畸变数值模拟及试验验证[J]. 金属热处理, 2016, 41(1): 204?210.
WANG W, LI H G, YANG Y F, et al. Numerical simulation and experimental verification for distortion of Ti6Al4V titanium alloy sheet during annealing[J]. Heat Treatment of Metals, 2016, 41(1): 204?210.