船舶结构安全评估时存在着大量不确定因素,使用确定性方法进行评估具有局限性。为合理评估服役船舶结构的安全性,提出一种基于多失效模式的结构可靠性评估方法。以船体屈服和疲劳失效为例,基于时域法求解出船体结构热点的应力时历。分别建立船体屈服和疲劳可靠性分析的极限状态方程,以单失效模式可靠度计算理论为基础,考虑串联系统,计算出多失效模式下结构热点和系统整体的失效概率。结果表明,考虑多失效模式的船体结构失效概率远大于单一失效模式下的失效概率。若用单一构件中的最大失效概率代表系统整体的失效概率,船体结构安全性能会被高估。该方法未来可进一步引入新的失效模式,为完善多失效模式下的船体结构可靠性评估提供一定的参考。
In the assessment of ship structural safety, there are numerous uncertain factors, and employing deterministic methods for evaluation has limitations. To reasonably evaluate the safety of in-service ship structures, a structural reliability assessment method based on multiple failure modes is proposed. Taking hull yielding and fatigue failure as examples, the stress time history of the ship′s structural hotspot is solved based on the time-domain method. Separate limit state equations for hull yielding and fatigue reliability analysis are established. Building on the theory of reliability calculation for single failure modes, considering series systems, the failure probabilities of the structural hotspot and the overall system are computed under multiple failure modes. The results indicate that the failure probability of the ship's structural system considering multiple failure modes is significantly higher than the failure probability under a single failure mode. If the maximum failure probability of a single component is used to represent the overall system failure probability, the safety performance of the ship's structure will be overestimated. This approach can be further enhanced by introducing new failure modes, providing a reference for refining the reliability assessment of ship structural systems under multiple failure modes in the future.
2025,47(3): 20-24 收稿日期:2024-3-25
DOI:10.3404/j.issn.1672-7649.2025.03.004
分类号:U661.4
基金项目:江苏省高等学校自然科学研究项目(23KJD580004);南通市社会民生科技计划项目(MS2023088)
作者简介:周陈炎(1993-),男,硕士,讲师,研究方向为船舶结构可靠性分析
参考文献:
[1] YUE J X, YANG K, PENG L H, et al. A frequency-time domain method for ship fatigue damage assessment[J]. Ocean Engineering, 2021, 220.
[2] 程成, 韦喜忠, 陈鲁愚, 等. 基于波面修正设计波的薄膜型LNG船整船屈服强度校核研究[J]. 船舶力学, 2022, 26(5): 700?713.
[3] 胡新明, 王德禹. 基于迭代均值组合近似模型和序贯优化与可靠性评估法的船舶结构优化设计[J]. 上海交通大学学报, 2017, 51(2): 150?156.
[4] 冯国庆, 邓进宁, 任慧龙, 等. 船体结构屈服强度可靠性分析[J]. 华中科技大学学报(自然科学版), 2014, 42(06): 58?62.
[5] PAVLOS M, Ε. N S, N. K A. Spectral fatigue analysis of ship structures based on a stochastic crack growth state model[J]. International Journal of Fatigue, 2023, 176
[6] YANG Y, WEI M, CUI Y, et al. Reliability-based topology-topography optimization for ship bulkhead structures considering multi-failure modes[J]. Ocean Engineering, 2024, 293116681.
[7] SHUMING X, YANG H, YI Z, et al. A reliability analysis framework of ship local structure based on efficient probabilistic simulation and experimental data fusion[J]. Metals, 2022, 12(5): 805?805.
[8] 王西召, 顾学康, 丁军, 等. 疲劳和腐蚀损伤下海上浮体极限强度时变可靠性[J]. 中国造船, 2023, 64(6): 49?59.
[9] YU J, WANG F, YU Y, et al. Study on Fatigue Spectrum Analysis and Reliability Analysis of Multilayer Flexible Riser[J]. Journal of Marine Science and Engineering, 2022, 10(10): 1561.
[10] 孙永波. 基于Copula的关联系统可靠性研究[D]. 重庆: 重庆大学, 2010.
[11] 中国船级社. 船体结构疲劳强度指南[S]. 北京: 人民交通出版社, 2021.
[12] HUSSEIN A W, SOARES C G. Reliability and residual strength of double hull tankers designed according to the new IACS common structural rules[J]. Ocean Engineering, 2009, 36(17?18): 1446?1459.
[13] ABS. Guide for the fatigue assessment of offshore structures[S]. New York: American Bureau of Shipping, 2014.
[14] ZHANG Z, HE Z, YANG B, et al. An improved Goodman-Smith fatigue limit diagram for railway vehicle base metals and welded structures[J]. International Journal of Fatigue, 2024, 182108160.
[15] WIRSCHING B, ASCE M. Fatigue reliability for offshore structures[J]. Journal of Structural Engineering, 1987, 110(10): 2340?2356.
[16] 杨鹏, 顾学康. 半潜平台波浪载荷不确定性及结构疲劳可靠性研究[J]. 船舶力学, 2013, 17(4): 398?410.