极地船舶在行驶过程中发生碰撞会导致船体结构造成损伤,严重威胁船舶的生命力,因此提高船舶的抗碰撞能力对极地勘探及运输发展具有重大意义。针对传统加筋结构难以进一步提升其吸能效率,提出一种新型帽形结构。基于船舶碰撞理论和有限元数值方法,分析了舷侧的能量吸收-撞击深度曲线和破损情况,总结了不同结构的耐撞性能。结果表明,当撞击船的量级比被撞船大时,被撞船的破坏模式以压溃为主。在不增加结构重量的前提下,将常规舷侧结构改良为新型舷侧结构后,舷侧结构的防撞性能会大幅提高。极地船舶舷侧上有封闭区域可以提升舷侧的防撞性能。结果可为极地船舶结构设计提供一定的参考。
Collisions between polar ships during navigation can cause damage to the ship's structure and seriously threaten its vitality. Therefore, improving the ship's collision resistance is of great significance for the development of polar exploration and transportation. A new hat shaped structure is proposed to address the difficulty of further improving the energy absorption efficiency of traditional reinforced structures. Based on ship collision theory and finite element numerical method, the energy absorption-impact depth curve and damage situation of the hull were analyzed, and the collision resistance performance of different structures was summarized. The results indicate that when the magnitude of the impact ship is larger than that of the collided ship, the damage mode of the collided ship is mainly crushing. Without increasing the weight of the structure, improving the conventional side structure to a new side structure will significantly improve the collision resistance performance of the side structure. The enclosed area on the side of polar ships can improve their collision resistance performance. The results can provide a certain reference for the structural design of polar ships.
2025,47(3): 39-43 收稿日期:2024-4-28
DOI:10.3404/j.issn.1672-7649.2025.03.007
分类号:U663.3
基金项目:国家自然科学基金面上项目(52071150)
作者简介:刘兴华(2001-),男,硕士研究生,研究方向为船舶碰撞
参考文献:
[1] MINORSKY V U. An analysis of ship collisions with reference to protection of nuclear power plants[J]. Journal of Ship Research, 1958, 3(2): 1?4.
[2] Cerup-Simonsen B, T?RNQVIST R, LüTZEN M. A simplified grounding damage prediction method and its application in modern damage stability requirements[J]. Marine Structures, 2009, 22(1): 62?83.
[3] 江华涛, 顾永宁. 整船碰撞非线性有限元仿真[J]. 上海造船, 2002(2): 16?21+2.
JIANG H T, GU Y N. Nonlinear finite element simulation of whole ship collision[J]. Shanghai Shipbuilding, 2002(2): 16?21+2.
[4] 王泽平, 胡志强, 陈刚. LNG船舷侧碰撞损伤场景下的极限强度研究[J]. 船舶工程, 2017, 39(7): 17?21+32.
WANG Z P, HU Z Q, CHEN G. Research on ultimate strength of LNG ship in side collision damage scenarios[J]. Ship Engineering, 2017, 39(7): 17?21+32.
[5] 陈炉云, 李磊鑫. 基于临界碰撞速度的船舶结构耐撞性优化[J]. 上海交通大学学报, 2018, 52(6): 643?649.
CHEN L Y, LI L X. Optimization of ship structural crashworthiness based on critical collision velocity[J]. Journal of Shanghai Jiaotong University, 2018, 52(6): 643?649.
[6] 王林, 夏峰. 浮冰与极地船舶抗冰结构碰撞研究[J]. 舰船科学技术, 2022, 44(15): 26?31.
WANG L, XIA F. Research on collision between floating ice and anti icing structures of polar ships[J]. Ship Science and Technology, 2022, 44(15): 26?31.
[7] JONES N. A literature survey on the collision and grounding protection of ships[R]. Ship Structure Committee. Report No. SSC-283, 1979.
[8] KITAMURA O. Comparative study on collision resistance of side structure[J]. Marine Technology, 1997, 34(4): 293?308.
[9] NAAR H, KUJALA P, et al. Comparison of the crashworthiness of various bottom and side structures[J]. Marine Structures, 2002, 15: 443?460.
[10] 王自力, 顾永宁. LPG船的一种新型舷侧耐撞结构研究[J]. 船舶工程, 2001, (2): 12?14+2.
WNAG Z L, GU Y N. A new type of side collision resistant structure for LPG ships [J]. Ship Engineering, 2001, (2): 12?14+2
[11] 王自力, 张延昌. 基于夹层板的单壳船体结构耐撞性设计[J]. 中国造船, 2008, (1): 60?65.
WANG Z L, ZHANG Y C. Crash resistance design of single shell ship structures based on sandwich panels [J]. Shipbuilding of China, 2008, (1): 60?65.
[12] 苏子星, 何继业. 基于Cowper-Symonds方程的相似理论修正方法[J]. 爆炸与冲击, 2018, 38(3): 654?658.
SU Z X, HE J Y. A similarity theory correction method based on the Cowper Symonds equation[J]. Explosion and Shock Waves, 2018, 38(3): 654?658.
[13] 虞亦伟. 碎冰区船—冰碰撞数值仿真研究[D]. 大连: 大连理工大学, 2021.
[14] 王自力, 顾永宁. 撞击参数对双层舷侧结构碰撞响应的影响[J]. 船舶工程, 2002(6): 13?16+3.
WANG Z L, GU Y N. The influence of impact parameters on the collision response of double-layer side structures[J]. Ship Engineering, 2002(6): 13?16+3.