为深入探究带缆水下机器人系统水动力与控制力的关系,设计一种水动力混编计算方法。首先引入脐带缆和水下机器人控制方程组,将机器人运动过程中合外力与脐带缆张力、螺旋桨推进力以及机器人主体水动力关联起来;其次设计收放脐带缆和调节螺旋桨转速的控制程序,最后将系统方程组求解程序、控制程序和水动力计算模块三者混编,形成水动力与控制力交互耦合计算方法。仿真计算结果表明,纵摇角、横摇角以及淹没深度仿真值与实验值误差分别为1°、0.5°和–50 mm;PID算法延迟对前馈调节机制产生影响,收放缆最大相对误差为15%,轨迹跟踪最大误差0.3 m。
A hybrid calculation method for hydrodynamic forces was designed to explore the relationship between hydrodynamic and control forces of tethered underwater robot system. Firstly the governing equations of umbilical cable and the underwater robot are introduced with relating the umbilical cable tension, propulsion from control propellers and the hydrodynamic loads on the robot body during the underwater robot moves. Then control programs of adjusting the umbilical cable length and regulating the rotating speeds of propellers are designed; finally the coupling interactive algorithm of mixing the equation solving program, the control program and the hydrodynamic calculation module is integrated. The simulation results shows that the errors about pitch, roll and submerged depth between numerical and experimental are 1°, 0.5° and –50 mm respectively. The maximum relative error of adjusting the cable length is about 15% which affected by the delay of PID algorithm and the maximum absolute error of trajectory tracking is 0.3 m.
2025,47(3): 101-110 收稿日期:2024-4-24
DOI:10.3404/j.issn.1672-7649.2025.03.017
分类号:U661.1
基金项目:国家自然科学基金资助项目(51979110);江苏省高等学校基础科学(自然科学)重大研究项目(23KJA560008)
作者简介:陈东军(1987-),男,博士,讲师,研究方向为带缆水下机器人系统运动控制与水动力仿真
参考文献:
[1] GUERRERO J, TORRES J, CREUZE V, et, al. Saturation based nonlinear PID control for underwater vehicles: Design, stability analysis and experiments[J]. Mechatronics, 2019, 61: 96?105.
[2] 马艳彤, 郑荣, 于闯. 过渡目标值的非线性PID对自治水下机器人变深运动的稳定控制[J]. 控制理论与应用, 2018, 35(8): 1120?1125.
MA Y T, ZHENG R, YU C. Autonomous underwater vehicle deepening control based on transiting target value nonlinear PID[J]. Control Theory & Applications, 2018, 35(8): 1120?1125.
[3] WANG Z, LIU Y, GUAN Z, et al. An adaptive sliding mode motion control method of remote operated vehicle[J]. IEEE Access, 2021, (99): 1.
[4] ELMOKADEM T, ZRIBI M, YOUCEF-TOUMI K. Terminal sliding mode control for the trajectory tracking of underactuated Autonomous Underwater Vehicles[J]. Ocean Engineering, 2016, 129: 613?625.
[5] ZHANG G, HUANG H, QIN HD, et al. A novel adaptive second order sliding mode path following control for a portable AUV[J]. Ocean Engineering, 2018, 151: 82?89.
[6] ZHANG W, TANG J, GONG P, et al. Lyapunov-based model predictive control trajectory tracking for an autonomous underwater vehicle with external disturbances[J]. Ocean engineering, 2021, 232: 109010.
[7] 苏伟, 王俊雄, 王震, 等. 基于线性工作点的水下机器人H∞鲁棒控制[J]. 舰船科学技术, 2020, (23): 101?105.
SU W, WANG J X, WANG Z, et al. H∞ robust control of autonomous underwater vehicle based on linear working point[J]. Ship Science and Technology, 2020, (23): 101?105.
[8] 范士波. 深海作业型 ROV 水动力试验及运动控制技术研究[D]. 上海: 上海交通大学, 2013.
[9] 赵言锋, 林明星, 代成刚, 等. ROV水动力性能及推力控制分配研究与仿真[J]. 中国科学: 技术科学, 2020, 50(3): 287–298.
ZHAO Y F, LIN M X, DAI C G, et al. Research and simulation of ROV hydrodynamic performance and thrust control distribution[J]. Sci Sin Tech, 2020, 50(3): 287–298.
[10] KUN Y, HAICHEN S, LI A, et al. Modeling and maneuverability simulation for vertical plane of autonomous underwater vehicle in current[J]. IOP Conference Series: Materials Science and Engineering, 2018, 435(1): 87?88.
[11] 王震. 缆控水下机器人水动力建模与运动控制研究[D]. 济南: 山东大学, 2019.
[12] GERTLER M. , HAGEN G. L. Standard equations of motion for submarine simulation[R]. David Taylor Research Center, Washington DC, Report No. DTMB 2510, 1967.
[13] WU J M, CHWANG All T. A hydrodynamic model of a two-part underwater towed system[J]. Ocean Engineering, 2000, 27(5): 455?472.
[14] BURGESS J J. Modeling of undersea cable installation with a finite difference method [C]//Proceeding of the First International Offshore and Polar Engineering Conference, Edinburgh, United Kingdom, 1991.
[15] WU J M, YE J W, CHENG, Y, et al. Experimental study on a controllable underwater towed system [J]. Ocean Engineering, 2005, 32(14?15): 1803?1817.
[16] SUAREZ R R A,ADRES PARR E, MILOSEVIC Z, et al. Nonlinear Attitude control of a spherical underwater vehicle[J]. Sensors, 2019, 19 (6): 1?20.