自主水下航行器协同技术发展需求日益迫切,研究多航行器协同探测技术能够提高未知海洋环境下作业效率、避免人员生命安全问题,在海洋资源探测、海洋搜救等应用中发挥着重要作用。在复杂未知水下环境中,通过多航行器协同行为实现对特定目标物的高效探测是一项巨大挑战。对水下群探测行为的关键技术进行研究,分析了基于图论、仿生模型、动力学模型和学习模型的水下群探测行为建模方法,分析了有组织和自组织群行为规划方法,分析了动力学模型、数据驱动的群体协同控制方法。研究结果表明,探测信息沟联的水下群体交互、可解释性强的学习类协同探测行为策略、动力学模型与数据相结合的行为控制方法是未来水下群探测行为技术的重要发展趋势。
Collective autonomous underwater vehicle (AUV) technology is in sore need. Researches on collective AUV technology can improve the operation efficiency of unknow ocean environment and avoid the human safety problem, which plays a significant role in applications such as ocean resource exploration and ocean search and rescue. High-efficient detection of specific targets via collective behavior of multi-AUV is a great challenge under the unknown, complex underwater environment. Key technologies on the underwater collective detecting behavior are studied, in which topological, biological, dynamical, and learning-based modelling methods, organized and self-organized collective behavior planning methods, as well as model and data-driven collaborative control methods are analyzed. Analysis results indicates that underwater collective interaction linked with detecting information, collective detecting behavior strategy via strong interpretable learning method, and behavior control combining dynamic models and data are important developing trends.
2025,47(3): 111-116 收稿日期:2024-4-11
DOI:10.3404/j.issn.1672-7649.2025.03.018
分类号:TP242.6
基金项目:国家自然科学基金项目(62373285);上海市产业协同创新项目(产业发展类,HCXBCY-2022-051);机器人技术与系统全国重点实验室开放基金(SKLRS-2024-KF-04);某部基础科研计划项目(XXXX2022YYYC133)
作者简介:余敏(1994-),女,博士,研究方向为水下集群无人系统、技能学习等
参考文献:
[1] 邱志明, 马焱, 孟祥尧, 等. 水下无人装备前沿发展趋势与关键技术分析[J]. 水下无人系统学报, 2023, 31(1): 1?9.
QIU Z M, MA Y, MENG X Y, et al. Analysis on the development trend and key technologies of unmanned underwater equipment[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 1?9.
[2] 亚尔古水手, 深海追迹者-“蓝鳍金枪鱼-21”自主无人潜水器[EB/OL]. (2018-07-27) [2024-03-14].
[3] 宋保维, 潘光, 张立川, 等. 自主水下航行器发展趋势及关键技术[J]. 中国舰船研究, 2022, 17(5): 27?44.
SONG B W, PAN G, ZHANG L C, et al. Development trend and key technologies of autonomous underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(5): 27?44.
[4] BIRK A, ANTONELLI G, CAITI A, et al. The CO3AUVs (cooperative cognitive control for autonomous underwater vehicles) project: overview and current progresses[C]//Oceans, Santander, Spain, 2011.
[5] 吴校生. 水下微小无人机集群发展综述[J]. 数字海洋与水下攻防, 2020(3): 192?197.
WU X S. Review of small-size underwater drones swarm development[J]. Digital Ocean & Underwater Warfare, 2020(3): 192?197.
[6] 沈月, 沈博, 武文亮, 等. 集群机器人空间协作行为模型构建方法综述[J]. 计算机科学与探索, 2022, 16(8): 1706?1726.
SHEN Y, SHEN B, WU W L, et al. Survey on modeling method of spatial cooperative behavior of swarm robots[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1706?1726.
[7] RAHWAN I, CEBRIAN M, OBRADOVICH N, et al[J]. Nature, 2019, 568: 477?486.
[8] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. Second Edition, Hoboken NJ: Wiley, 2021.
[9] 李鹏飞. 基于水下无人集群协同探测的区域配置优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
[10] 苍思远. 基于稀疏表示的水下无人集群稳健探测技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[11] ZHANG Y, ZHANG W, XIA G, et al. Distributed cooperative dual closed loop velocity-attitude consensus controller for rendezvous of the underactuated AUV swarm in 3-dimensional space[J]. Ocean Engineering, 2023, 273: 113752.
[12] WANG J, DU J, and LI J. Distributed finite-time velocity-free robust formation control of multiple underactuated AUVs under switching directed topologies[J]. Ocean Engineering, 2022, 266: 112967.
[13] WANG L, ZHU D, PANG W, et al A survey of underwater search for multi-target using multi-AUV: task allocation, path planning, and formation control[J]. Ocean Engineering, 2023, 278: 114393.
[14] MCMAHON J and PLAKU E. Autonomous underwater vehicle mine countermeasures mission planning via the physical traveling salesman problem[C]//Oceans, Washington, USA, 2015.
[15] YORDANOVA V and GIPS B. Coverage path planning with track spacing adaptation for autonomous underwater vehicles[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4774?4780.
[16] PAULL L, SAEEDI S, SETO M, et al. Sensor-driven online coverage planning for autonomous underwater vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(6): 1827?1838.
[17] ISOKEIT C, OSIIK A, BEHRIE U, et al. Efficient complete coverage path planning for collaborative survey tasks by AUVs[C]//Oceans, Chennai, India, 2022.
[18] LIANG H, YU F, and GAO J. Bio-inspired self-organized cooperative control consensus for crowded UUV swarm based on adaptive dynamic interaction topology[J]. Applied Intelligence, 2021, 51: 4664?4681.
[19] ZHU D, CAO X, SUN B, et al. Biologically inspired self-organizing map applied to task assignment and path planning of an AUV system[J]. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10(2): 304?313.
[20] LINDSAY J, SETO M, and BAUER R. Reinforcement Q-learning applied to underwater search planning towards maximizing information gain in environments with variable target detection probabilities[C]//IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), St. Johns, Canada, 2020.
[21] YAO P, QIU L, QI J, et al. AUV path planning for coverage search of static target in ocean environment[J]. Ocean Engineering, 2021, 241: 110050.
[22] WANG L, ZHU D, PANG W, et al. A novel obstacle avoidance consensus control for multi-AUV formation system[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(5): 1304?1318.
[23] WANG C, ZHU S, LI B, et al. Time-varying constraint-driven optimal task execution for multiple autonomous underwater vehicles[J]. IEEE Robotics and Automation Letters, 2023, 8(2): 712?719.
[24] BAI G, CHEN Y, HU X, et al. Multi-AUV dynamic trajectory optimization and collaborative search combined with task urgency and energy consumption scheduling in 3-D underwater environment with random ocean currents and uncertain obstacles[J]. Ocean Engineering, 2023, 275: 113841.
[25] FRANSMAN J, SIIS J, DOL H, et al. Distributed constraint optimization for autonomous multi AUV mine counter-measures[C]//Oceans, Charleston, USA, 2018.
[26] 孙栋, 汤奇荣, 刘明昊, 等. 面向模块化设计的水下机器人集群编队控制[J]. 舰船科学技术, 2024, 46(2): 68?73.
SUN D, TANG Q R, LIU M H, et al. Research on swarm formation control of modular underwater robots[J]. Ship Science and Technology, 2024, 46(2): 68?73.
[27] ABAD A, DILEO N, FREGENE K. Decentralized model predictive control for UUV collaborative missions[C]//Oceans, Anchorage, USA, 2017.
[28] XU W, XIAO Y, LI H, et al. Trajectory tracking for autonomous underwater vehicle based on model-free predictive control[C]//IEEE 20th International Conference on High Performance Switching and Routing (HPSR), 2019.