针对SINS/DVL组合导航传统误差模型中卡尔曼滤波在复杂水域误差较大的问题,引入李群右误差模型并提出一种自适应抗差算法。该算法在传统滤波的基础上,采用引入量测新息构建统计量,利用统计量所处区间来构建权值矩阵,进而修改量测噪声协方差矩阵来解决滤波发散的问题。通过船载实验数据,所提的鲁棒滤波相较于传统滤波在位置和速度估计精度方面分别提高了56.3%和69.1%,相较于普通抗差滤波分别提高了7.9%和12.5%。研究结果表明,在李群右误差模型基础上利用自适应抗差算法可以有效提高滤波的抗干扰能力。
To address the issue of large errors in traditional Kalman filtering for SINS/DVL integrated navigation in complex water environments, a Lie group right error model is introduced and an adaptive robust algorithm is proposed. This algorithm, based on traditional filtering, modifies the measurement noise covariance matrix by constructing a weight matrix using the introduced measurement residue to solve the problem of filtering divergence, thus improving the algorithm's anti-interference ability. Through onboard experiments, the proposed robust filtering method improved position and velocity estimation errors by 56.3% and 69.1%, respectively, compared to traditional filtering, and by 7.9% and 12.5%, respectively, compared to conventional robust filtering. Research results show that utilizing adaptive robust algorithms on the basis of Lie group error model can effectively enhance the filtering's anti-interference capability.
2025,47(3): 123-128 收稿日期:2024-4-29
DOI:10.3404/j.issn.1672-7649.2025.03.020
分类号:U666.12
基金项目:国家自然科学基金资助项目(42074010,42174051)
作者简介:郜鹏华(2001-),男,硕士研究生,研究方向为组合导航
参考文献:
[1] 毛玉良, 陈家斌, 宋春雷, 等. 捷联惯导姿态误差模型分析[J]. 中国惯性技术学报, 2013, 21(2): 182?185.
MAO Y L, CHEN J B, SONG C L, et al. Analysis of strapdown inertial navigation attitude error model[J]. Journal of Chinese Inertial Technology, 2013, 21(2): 182?185.
[2] 宋世磊. SINS/DVL水下组合导航技术研究[D]. 镇江: 江苏科技大学, 2022.
[3] 王博, 刘泾洋, 刘沛佳. SINS/DVL组合导航技术综述[J]. 导航定位学报, 2020, 8(3): 1?6.
WANG B, LIU J Y, LIU P J. A review of SINS/DVL integrated navigation technology[J]. Journal of Navigation and Positioning, 2020, 8(3): 1?6.
[4] 朱天高, 刘勇, 李开龙, 等. 基于欧拉角的李群捷联惯导误差模型分析与比较研究[J]. 系统工程与电子技术, 2023, 45(10): 3265?3273.
ZHU T G, LIU Y, LI K L, et al. Analysis and comparative study of Lie group strapdown inertial navigation error model based on Euler angles[J]. Journal of Systems Engineering and Electronics, 2023, 45(10): 3265?3273.
[5] 李万里, 陈明剑, 张伦东, 等. 基于新息的SINS/DVL组合导航自适应滤波算法[J]. 兵器装备工程学报, 2020, 41(12): 225?229, 252.
LI W L, CHEN M J, ZHANG L D, et al. Adaptive kalman filter based on innovation sequence for SINS /DVL integrated navigation[J]. Journal of Ordnance Equipment Engineering, 2020, 41(12): 225?229, 252.
[6] 钱镭源, 覃方君, 李开龙, 等. 基于SE(3)的鲁棒自适应算法及其在SINS/DVL中的应用[J]. 上海交通大学学报, 2024, 58(4): 498?510.
QIAN L Y, QIN F J, LI K L, et al. Robust adaptive algorithm based on SE(3) and its application in SINS/DVL[J]. Journal of Shanghai Jiaotong University, 2024, 58(4): 498?510.
[7] 朱兵, 李星, 刘强, 等. 鲁棒Kalman滤波及其在水下组合导航中的应用[J]. 导航定位与授时, 2021, 8(1): 96?103.
ZHU B, LI X, LIU Q, et al. Robust Kalman filtering and its application in underwater integrated navigation[J]. Navigation Positioning and Timing, 2021, 8(1): 96?103.
[8] LUO Y, LU F, GUO C, et al. Matrix Lie group-based extended kalman filtering for inertial-integrated navigation in the navigation frame[J]. Ieee Transactions on Instrumentation and Measurement, 2024, 73.
[9] 蒋宁. 基于李群描述的捷联惯性导航系统研究[D]. 北京: 北京工业大学, 2019.
[10] 李昕, 孟硕林, 黄观文, 等. 基于SE(3)-EKF的旋翼无人机GNSS/SINS空中快速对准方法[J]. 中国惯性技术学报, 2023, 31(11): 1076?1082.
LI X, MENG S L, HUANG G W, et al. Rapid alignment method for rotary-wing unmanned aerial vehicle GNSS/SINS based on SE(3)-EKF[J]. Journal of Chinese Inertial Technology, 2023, 31(11): 1076?1082.
[11] ZHU T, LI A, LI K, et al. The quaternion based error model based on SE(3) of the INS[J]. IEEE Sensors Journal, 2022, 22(13): 13067?13077.
[12] 葛志敏, 江金光, 张超, 等. 改进抗差自适应EKF算法在GNSS/INS组合导航中的应用[J]. 大地测量与地球动力学, 2023, 43(7): 740?744.
GE Z M, JIANG J G, ZHANG C, et al. Application of improved robust adaptive EKF algorithm in GNSS/INS integrated navigation[J]. Geodesy and Geodynamics, 2023, 43(7): 740?744.
[13] JIANG C, ZHANG S B, ZHANG Q Z. A New adaptive h-infinity filtering algorithm for the GPS/INS integrated navigation[J]. Sensors, 2016, 16(12): S16122127.
[14] 许万, 程兆, 夏瑞东, 等. 一种基于动态残差的自适应鲁棒无迹卡尔曼滤波器定位算法[J]. 中国机械工程, 2023, 34(21): 2607?2614.
XU W, CHENG Z, XIA R D, et al. A dynamic residual-based adaptive robust unscented Kalman filter localization algorithm[J]. China Mechanical Engineering, 2023, 34(21): 2607?2614.
[15] 孟祥羽, 邱中军, 谷传营, 等. 自适应及抗差Kalman滤波在GNSS/INS组合导航中的应用[J]. 世界地质, 2023, 42(3): 545?550.
MENG X Y, QIU Z J, GU C Y, et al. Application of adaptive and robust Kalman filtering in GNSS/INS integrated navigation[J]. World Geology, 2023, 42(3): 545?550.
[16] 王坚, 刘超, 高井祥, 等. 基于抗差EKF的GNSS/INS紧组合算法研究[J]. 武汉大学学报(信息科学版), 2011, 36(5): 596?600.
WANG J, LIU C, GAO J X, et al. Research on GNSS/INS tight integration algorithm based on robust EKF[J]. Journal of Wuhan University (Information Science Edition), 2011, 36(5): 596?600.
[17] 吴昕, 刘超. GNSS/INS组合导航中自适应抗差KF算法研究[J]. 南方农机, 2024, 55(4): 21?25.
WU X, LIU C. Research on adaptive robust KF algorithm in GNSS/INS integrated navigation[J]. Southern Agricultural Machinery, 2024, 55(4): 21?25.
[18] JIANG C, ZHANG S B. A novel adaptively-robust strategy based on the mahalanobis distance for GPS/INS integrated navigation systems[J]. Sensors, 2018, 18(3): S18030695.
[19] 郑启山, 朱少红, 陈长红, 等. 基于改进卡尔曼滤波的风电塔筒倾斜监测算法[J]. 电脑知识与技术, 2023, 19(32): 11?15.
ZHENG Q S, ZHU S H, CHEN C H, et al. Inclination monitoring algorithm for wind turbine towers based on improved Kalman filtering[J]. Computer Knowledge and Technology, 2023, 19(32): 11?15.