长期以来舰炮、火炮发射动力学仅围绕炮体机械振动系统开展研究,但由于结构阻尼固有的小量级特性使得减振设计效果不够,更多的只能是对已有炮体发射后的振动响应做出预测,忽视了随动系统作为高阻尼子系统在火炮振动系统起到的主体作用;提出“机电系统耦合发射动力学”观点;通过实测抱闸、随动带炮射击时的炮口振动误差,对炮体机械振动系统、炮机电振动系统的阻尼比等振动参数进行对比分析。结果表明,同一装备,随动系统参与炮振动系统时的阻尼比、减幅系数、振动衰减时间分别是仅靠炮体机械振动系统的4倍、2.55倍、0.25倍;随动系统不只实现带炮跟瞄目标功能,也具有对炮口振动的主动抑振功能;机电系统耦合发射动力学对促进舰炮、火炮,尤其是大后坐质量的电磁炮工程指标提升具有更大的工程应用价值。
For a long time, the launch dynamics of navy gun and artillery was studied only around the mechanical vibration system of the gunmount. However, due to the inherent small magnitude characteristics of structural damping, the damping design effect is not sufficient. Mostly,it can only predict the vibration response of existing gunmount after launching. The main role of gun servo system as a high damping subsystem in the gun vibration system is ignored. The viewpoint of ‘servo-and-mechanical coupling launch dynamics’ is prosposed. By measuring the muzzle vibration error under the condition of braking and with servo system driving gunmount during firing, a comparative analysis was conducted on the vibration parameters such as the damping ratio of mechanical vibration system and electromechanical vibration system. The results show that for the same equipment, the damping ratio, damping coefficient, and vibration attenuation time of the servo system participating in the gun vibration system are 4 times, 2.55 times, and 0.25 times higher than those relying solely on the mechanical vibration system, respectively. The servo system not only achieves the function of tracking and aiming targets driving guns, but also has the active vibration suppression function for the muzzle vibration. The coupled launch dynamics of electromechanical systems have greater engineering application value in promoting the improvement of engineering indicators of navy gun and artillery,especially electromagnetic railgun with greater recoil mass.
2025,47(3): 180-184 收稿日期:2024-4-7
DOI:10.3404/j.issn.1672-7649.2025.03.031
分类号:TJ301
基金项目:国家自然科学基金资助项目(92266203)
作者简介:邱群先(1972-),男,硕士,研究员,研究方向为系统动力学
参考文献:
[1] 杨国来, 葛建立, 孙全兆, 等. 火炮振动与控制的发展现状及应用前景[J]. 振动、测试与诊断, 2021, 41(6): 1043?1051.
[2] 芮筱亭, 邱风昌. 多体火炮系统的固有振动特性─多体系统动力学的传递矩阵法[J]. 兵工学报, 1995(2): 7?12.
[3] 芮筱亭, 于海龙, 何斌, 等. 舰炮振动分析的多体系统有限元传递矩阵法[J]. 兵工学报, 2007, 28(9): 1036?1040.
[4] 芮筱亭, 王国平, 陈卫东, 等. 多管火箭随机发射与飞行动力学仿真[J]. 南京理工大学学报(自然科学版), 2003, 27(5): 616?620.
[5] 王德石, 史跃东. 火炮振动分析与多体系统模型研究[J]. 动力学与控制学报, 2012, 10(4): 303?322.
[6] 史跃东, 王德石. 舰炮振动的刚柔耦合动力学分析[J]. 弹道学报, 2010, 22(1): 37?40.
[7] 谢润, 杨国来, 徐龙辉. 自行火炮行进间刚柔耦合多体系统动力学分析[J]. 南京理工大学学报, 2014, 38(5): 588?592.
[8] 荣光, 孙宇新, 王金相. 特种多轨道炮发射振动分析[J]. 弹箭与制导学报, 2009, 29(5): 255?256, 264.
[9] 萧辉. 面向大口径火炮一体化设计的多柔体系统动力学优化方法研究[D]. 南京: 南京理工大学, 2019.
[10] 陈忠明, 何连珠, 黄季墀. 阻尼材料在飞机炮振减振上的应用[J]. 飞机设计, 2001, (6): 31?33.
[11] 吴琼. 大口径舰炮摇架的振动特性及结构优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[12] 肖俊波. 小口径自动炮低后坐发射与振动控制技术研究[D]. 南京: 南京理工大学, 2019.
[13] 孙海涛. 基于智能材料结构身管振动主动控制技术研究[D]. 太原: 中北大学, 2016.
[14] 王琼林, 李强, 苟兵旺, 等. 大口径火炮发射过程炮架振动的主动抑制技术[J]. 火炸药学报, 2017, 40(6): 1?6.
[15] 孙明颜, 郭保全, 蒋华剑. 两栖火炮水上射击身管振动控制仿真研究[J]. 计算机仿真, 2014, 31(3): 20?24.
[16] 倪振华. 振动力学[M]. 西安: 西安交通大学出版社, 1989.