为了探讨转动导管螺旋桨的水动力性能,本文采用基于RANS(Reynolds-Averaged Navier-Stokes)方程的CFD(Computational Fluid Dynamics)方法对不同导管剖面型式、不同导管转动角度下导管桨的敞水性能进行数值计算。首先,通过与实验结果的对比分析对所采用的数值计算方法进行了验证;然后,基于数值计算结果讨论了导管剖面型式变化、导管后添加舵及导管转动的情况下导管桨敞水性能的变化。结果表明,扭矩系数受导管剖面型式变化的影响比推力系数大,导管桨的推力系数基本不变,扭矩系数变小,敞水效率升高;导管后舵的存在使导管桨推力系数和扭矩系数都增大,但敞水效率几乎不变;导管转动后,推力系数在转动角度达一定值前略微增加,之后大幅下降,而扭矩系数一直大幅增大,敞水效率明显下降。
In order to investigate the hydrodynamic performance of rotating ducted propellers, this paper uses CFD (Computational Fluid Dynamics) method based on RANS (Reynolds-Averaged Navier-Stokes) equation to numerically calculate the open water performance of ducted propellers under different duct profile types and different duct rotation angles. Firstly, the numerical calculation method adopted was verified by comparative analysis with experimental results. Then, based on the numerical calculation results, the changes in open water performance of ducted propellers under the conditions of varying duct profile types, adding rudders behind the ducts, and rotating the ducts were discussed. The results show that the torque coefficient is more affected by changes in duct profile type than the thrust coefficient, and the thrust coefficient of ducted propellers remains basically unchanged, while the torque coefficient decreases and the open water efficiency increases. The presence of rudders behind the ducts increases both the thrust coefficient and torque coefficient of ducted propellers, but the open water efficiency remains almost unchanged. After rotating the ducts, the thrust coefficient increases slightly before reaching a certain value of rotation angle, and then decreases sharply, while the torque coefficient increases significantly, and the open water efficiency decreases significantly.
2025,47(4): 1-6 收稿日期:2024-4-8
DOI:10.3404/j.issn.1672-7649.2025.04.001
分类号:U664.33
基金项目:国家自然科学基金资助项目(52271326)
作者简介:周利兰(1985-),女,博士,副教授,研究方向为船舶水动力性能
参考文献:
[1] 王贵彪, 单长飞, 李国强, 等. 非定常工况下导管对螺旋桨水动力性能的影响[J]. 船舶工程, 2023, 45(1): 77-83.
[2] 盛振邦, 高新船舶与深海开发装备协同创新中心组. 船舶原理 (第2版) 下[M]. 上海: 上海交通大学出版社, 2019.
[3] 伏尔夫·阿西诺夫斯基, 王天翔. 转动导管船舶的操纵性能[J]. 江苏船舶, 1987(2): 43-51.
[4] 王国强, 曹梅亮, 张云彩, 等. 导管舵的水动力性能[J]. 上海交通大学学报, 1984(3): 65-77.
[5] 莫继华, 高嵩. 导管舵性能分析与舵力计算[J]. 船舶设计通讯, 2014(2): 30-33+39.
[6] XIE Y, WANG G, WANG W. Research on hydrodynamic performance of the interaction between ducted propeller and rudder based on CFD[J]International Journal of Ocean System Engineering, 2013(3): 169-174.
[7] ZHANG W, LI F, SUN S, et al. Numerical analysis of the hydrodynamic interaction between a propeller and trapezoidal rudder[J]. Applied Ocean Research, 2023, 134: 103536.
[8] VILLA D, GAGGERO S, TANI G, et al. Numerical and experimental comparison of ducted and non-ducted propellers[J]. Journal of Marine Science and Engineering, 2020, 8(4): 257-259.
[9] 陆德顺, 孙铁志, 张桂勇. 导管螺旋桨水动力特性仿真分析[J]. 船舶, 2023, 34(6): 102-110.
[10] GONG J, GUO C YU, PHAN-THIEN N, et al. Hydrodynamic loads and wake dynamics of ducted propeller in oblique flow conditions[J]. Ships and Offshore Structures, 2020, 15(6): 645-660.
[11] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[12] AN X, WANG P, SONG B, et al. Bi-directional fluid-structure interaction for prediction of tip clearance influence on a composite ducted propeller[J]. Ocean Engineering, 2020, 208: 107390.
[13] 张大朋, 严谨, 赵博文, 等. 螺旋桨敞水性能数值仿真与分析[J]. 船舶标准化工程师, 2022, 55(4): 27-37.
[14] GAGGERO S, TANI G, VIVIANI M, et al. A study on the numerical prediction of propellers cavitating tip vortex[J]. Ocean Engineering, 2014, 92: 137-161.
[15] 李浩然, 冀楠, 钱志鹏, 等. 斜流中操舵对螺旋桨性能影响研究[J]. 舰船科学技术, 2022, 44(19): 52-58.
LI H R, JI N, QIAN Z P, et al. Study on influence of steering in oblique flow on propeller performance[J]. Ship Science and Technology, 2022, 44(19): 52-58.