叶片作为垂直轴风电机组的重要组成部分,是风电机组与外界风能相互作用的关键载体。基于CFD方法,采用动网格与重叠网格技术,对H型风机进行气动载荷计算。对额定风速下的风机高径比和密实度等重要气动参数进行敏感性分析。 结果表明,H型风机均在高径比为1.2,密实度为0.12下气动性能达到最优。翼型、叶片数量的变化对受力系数的影响较小,但对能量转换效果影响显著。研究可对垂直轴风机的参数优化提供理论指导。
As an important part of vertical axis wind turbine (VAWT), blade is the key carrier of the interaction between wind turbine and external wind energy.Based on CFD method, dynamic grid and overlapping grid technology are used to calculate the aerodynamic load of H-type VAWT. Conduct sensitivity analysis on important aerodynamic parameters such as height-to-diameter ratios and dense degree of VAWT at rated wind speed. The results show that the aerodynamic performance of H-type VAWT is optimal at the height-to-diameter ratio is 1.2 and the dense degree is 0.12.The change of airfoil and blade number have little influence on the force coefficient, but significantly affected the effect of energy conversion. This study provides theoretical guidance for the parameter optimization of the VAWT.
2025,47(4): 7-13 收稿日期:2024-5-15
DOI:10.3404/j.issn.1672-7649.2025.04.002
分类号:TK83
作者简介:陈颖(1985-),女,博士,高级工程师,研究方向为船舶与海洋结构物设计制造
参考文献:
[1] 赵培栋. 海上双转子垂直轴风机气动性能研究[D]. 大连: 大连理工大学, 2021.
[2] 刘利琴, 袁瑞, 邓万如, 等. 浮式垂直轴风机转子设计及动力学仿真[J]. 中国海洋平台, 2019, 34(5): 1-9+16.
LIU L Q, YUAN R, DENG W R, et al. Rotor design and dynamic simulation of floating vertical axis wind turbine[J]. China Offshore Platform, 2019, 34(5): 1-9+16.
[3] 樊百林, 王俊朋, 尉国梁, 等. 叶片数量对小型垂直轴风机气动性能的影响分析[J]. 科技通报, 2021, 37(5): 58-63.
FAN B L, WANG J P, WEI G L, et al. Influence of blade number on aerodynamic performance of small vertical axis fan[J]. Bulletin of Science and Technology, 2021, 37(5): 58-63.
[4] 张宏林, 杜周洋, 程帅, 等. H型垂直轴风机参数对性能的影响[J]. 科技资讯, 2019, 17(1): 96+98.
ZHANG H L, DU Z Y, CHENG S, et al. The influence of H-type vertical shaft fan parameters on performance[J]. Science and technology information, 2019, 17(1): 96+98.
[5] CHAO M , GUANG H W, DING B W, et al. Optimization design and performance analysis of a bio-inspired fish-tail vertical axis wind rotor[J]. Energy Conversion and Management, 2024, 300.
[6] AGRAWAL S, WONG J K, SONG J, et al. Assessment of the aerodynamic performance of unconventional building shapes using 3D steady RANS with SST k-ω turbulence model[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2022, 225.
[7] 杨浩. 基于Burgers涡方法的液力透平尾涡解析模型及控制方法研究[D]. 兰州: 兰州理工大学, 2023.
[8] 陈思远. 机翼运动的有限涡方法求解[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[9] 邵华梅. 基于CFD和遗传算法的垂直轴风机翼型优化研究[D]. 南昌: 东华理工大学, 2022.
[10] 楚良子. 基于CFD的双转子垂直轴风机外形优化研究[D]. 大连: 大连理工大学, 2020.
[11] KOMEN E M J, CAMILO L H, SHAMS A, et al. A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows[J]. Journal of Computational Physics, 2017, 345: 565-595.
[12] MING Z, TONG W, SHI X H, et al. Turbulence simulations with an improved interior penalty discontinuous Galerkin method and SST k-ω model[J]. Computers and Fluids, 2023, 263.
[13] 王肖芸. 针对建筑风荷载的DES湍流模型优化[D]. 哈尔滨: 哈尔滨工业大学, 2021.
[14] SAYDAM A Z, KÜÇÜKSU G N, İNSEL M, et al. Uncertainty quantification of self-propulsion analyses with RANS-CFD and comparison with full-scale ship trials[J]. Brodogradnja : Teorija i praksa brodogradnje i pomorske tehnike, 2022, 73(4): 107-129.
[15] 姜劲, 孙科, 郑雄波. 半潜型垂直轴风机纵荡下气动载荷特性[J]. 哈尔滨工程大学学报, 2019, 40(6): 1084-1089.
JIANG J, SUN K, ZHENG X B. Aerodynamic load characteristics of vertical axis semi-submerged floating wind turbine under surge motion[J]. Journal of Harbin Engineering University, 2019, 40(6): 1084-1089.
[16] 姜宜辰, 赵培栋, 王昆, 等. 海上双转子垂直轴风机的气动性能[J]. 船舶工程, 2019, 41(S1): 390-394.
JIANG Y C, ZHAO P D, WANG K, et al. The aerodynamic performance of offshore twin vertical axis wind turbines[J]. Ship Engineering, 2019, 41(S1): 390-394.
[17] WEI Y S, JIN J, KE S, et al. Aerodynamic performance of semi-submersible floating wind turbine under pitch motion[J]. Sustainable Energy Technologies and Assessments, 2021, 48: 2–4.