基于国际海事组织(IMO)碳减排要求,在使用LPG燃料驱动的船舶上,展开碳捕捉装置余热利用的可行性分析;设置一种新的工艺流程,选择使用N-甲基二乙醇胺(MDEA)溶液的化学吸收法进行碳捕捉,将从解吸塔返回的高温贫液与LPG低温燃料通过管壳式换热器进行热交换,并将从主机返回的高温LPG燃料用于加热吸收塔出口的低温富液后重新供给主机,据此展开换热分析和仿真计算;运算结果显示,返回LPG通过三通重新供给主机的设计可行,且采用贫液加热LPG后燃料进机温度在预设区间内;分析表明,第二、第三换热器采用管壳式换热器,选择高压LPG燃料走管程,醇胺溶液走壳程的方案,具有可操作性;且当设定LPG初始温度≥10o C、碳捕捉率≥20%和管程数≥8(L=2 m)时,碳捕捉系统的余热可用来对LPG系统进行有效调温,并将进机温度控制在25~45℃合格区间。
Based on IMO carbon reduction requirements, feasibility analysis of waste heat utilization of carbon capture devices is conducted on ships powered by LPG fuel. Set up a new process flow and choose the chemical absorption method using MDEA alcohol amine solution for carbon capture. The high-temperature lean liquid returned from the desorption tower and LPG low-temperature fuel are exchanged through a shell and tube heat exchanger. The high-temperature LPG fuel returned from the engine is used to heat the low-temperature rich liquid at the outlet of the absorption tower and then re supplied to the engine. Based on this, heat transfer analysis and simulation calculations are carried out. The calculation results show that the design of returning LPG to the main engine through a Tee is feasible, and the fuel inlet temperature is within the preset range after heating LPG with lean liquid. The analysis shows that the second and third heat exchangers use shell and tube heat exchangers, and the scheme of high-pressure LPG fuel passing through the tube side and alcohol amine solution passing through the shell side is feasible; And when the initial temperature of LPG is set to be≥10 o C, the carbon capture rate is≥20%, and the number of passes is≥8 (L=2 m), the residual heat of the carbon capture system can be used to effectively regulate the temperature of the LPG system, and the inlet temperature can be controlled within the qualified range of 25-45o C.
2025,47(4): 21-26 收稿日期:2024-3-13
DOI:10.3404/j.issn.1672-7649.2025.04.004
分类号:U664.1
基金项目:招商局工业集团专项资金(CMMI-0000-APA-0072);2020工信部高技术船舶科研项目(MC-202003-Z01-07)
作者简介:赵立玉(1972-),男,高级工程师,研究方向为低碳船舶设计与建造管理
参考文献:
[1] 唐强, 李金惠, 邹建伟, 等. 二氧化碳捕集技术研究现状与发展综述[J]. 世界科技研究与发展, 2023, 45(5): 567-580.
[2] 詹熳宁, 娄春景. 氨燃料散货船的方案设计[J]. 船海工程, 2023, 52(3): 62-67.
[3] 李娜, 张卓缘. 绿色甲醇燃料的船用分析与展望[J]. 中国水运, 2023(5): 61-63.
[4] 周晓, 冷瑜. 航运业碳减排和零碳发展面临的挑战与应对建议[J]. 上海船舶运输科学研究所学报, 2021, 44(4): 63-68+83.
[5] 黄宏, 张军民. 预混氢/氨对船用发动机燃烧和排放性能的影响[J]. 船舶工程, 2023, 45(6): 88-92+160.
[6] 孙瑞. 基于LPG的船用双燃料供给系统设计[J]. 舰船科学技术, 2021, 43(13): 82-87.
SUN R. Design of LPG's marine dual fuel supply system[J]. Ship Science and Technology, 2021, 43(13): 82-87.
[7] 康顺吉, 沈喜洲, 向丽. MDEA及其复合胺溶液对CO2吸收与解吸研究进展[J]. 天然气化工(C1化学与化工), 2019, 44(4): 124-130.
[8] 李红, 吉轲, 齐天勤机, 等. 复配醇胺溶液对CO2的吸收解吸性能及其降解性能[J]. 化工进展, 2022, 41(2): 1025-1035.
[9] 盖群英, 张永春, 周锦霞, 等. 醇胺溶液吸收与解吸CO2的研究[J]. 环境污染与防治, 2008(6): 62-65.
[10] 孙瑞, 黄朝俊, 司徒颖峰, 等. 可变比例掺水甲醇燃料供给系统原理性设计[J]. 船海工程, 2023, 52(1): 93-97.
[11] 罗聪, 罗童, 徐勇庆, 等. 钙基吸附剂的CO2捕集及其热化学储能研究进展[J]. 华中科技大学学报(自然科学版), 2022, 50(7): 101-109.
[12] 傅慧萍, 胡云波, 彭磊. 极地气垫破冰船发动机余热利用数值研究[J]. 舰船科学技术, 2023, 45(19): 124-129.
FU H P, HU Y B, PENG L. Numerical research on waste heat reclaim of polar air-cushion ice-breaker engine[J]. Ship Science and Technology, 2023, 45(19): 124-129.
[13] 韩中合, 庞永超. 先进绝热压缩空气储能中蓄热系统的改进[J]. 分布式能源, 2016(1): 22-27.
[14] 孙瑞, 黄朝俊, 宋秀丽, 等. 船用氨燃料供给系统设计和CFD仿真[J]. 船舶, 2023, 34(4): 81-88.
[15] 李新, 初建树. 船舶产品应对碳减排的举措分析[J]. 船舶, 2022, 33(3): 28-36.
[16] 张勇, 徐昌. 氢能船上应用的关键技术研究[J]. 舰船科学技术, 2022, 44(4): 97-100.
ZHANG Y, XU C. Analysis of hydrogen industrial chain and key technology of application on ships[J]. Ship Science and Technology, 2022, 44(4): 97-100.
[17] 吴磊, 李仁科, 郑卓等. 船舶行业CO2减排技术的应用与展望[J]. 船舶标准化工程师, 2023, 56(6): 22-26.
[18] 李陈峰, 宋星晨, 白玉刚, 等. 船用新材料技术发展及碳减排贡献度分析[J]. 舰船科学技术, 2023, 45(19): 82-88.
LI C F, SONG X C, BAI Y G, et al. A review of new shipbuilding materials and their influence on ship lightweight and carbon emission reduction[J]. Ship Science and Technology, 2023, 45(19): 82-88.