近年来,随着人们对海洋资源探索的不断深入,水下作业装置的性能也越来越受到人们的重视。为了研究水下作业装置在偏航和俯仰状态下的水动力学特性,本文基于雷诺时均N-S方程(RANS)和RNG $ k-\varepsilon $湍流模型,对SUBOFF潜艇进行数值模拟,并与实验数据进行比较,验证了数值模拟方法的有效性和可靠性。其次,在数值模拟中研究了不同偏航角和俯仰角对水下作业装置表面压力和涡旋的影响;并在PIV试验中研究了不同偏航角和俯仰角对水下作业装置尾流速度的影响。结果表明,随着偏航角和俯仰角的增大,迎流面的表面压力逐渐增大,涡旋向背流侧发展,尾流速度阻塞区域增大,低速区范围逐渐扩大。
In recent years, with the deepening of the exploration of Marine resources, the performance of underwater operating equipment has been paid more and more attention. In order to study the hydrodynamic characteristics of underwater operating equipment under yaw and pitch conditions, numerical simulation of SUBOFF submarine based on Reynolds time-mean N-S equation (RANS) and RNG k-ε turbulence model is carried out in this paper. The effectiveness and reliability of the numerical simulation method are verified by comparison with the experimental data. Secondly, the influence of different yaw Angle and pitch Angle on the surface pressure and vortex of underwater operating equipment is studied in numerical simulation. The effects of different yaw Angle and pitch Angle on the wake velocity of underwater operating equipment are studied in PIV test. The results show that with the increase of yaw Angle and pitch Angle, the surface pressure of the oncoming surface increases gradually, the vortex develops towards the backflow side, the wake velocity blocking area increases, and the low velocity area expands gradually.
2025,47(4): 45-50 收稿日期:2024-3-21
DOI:10.3404/j.issn.1672-7649.2025.04.008
分类号:U661.1
基金项目:江苏省自然科学基金资助项目(BK20191459)
作者简介:张港庆(1997-),男,硕士研究生,研究方向为海工装备数字化设计
参考文献:
[1] 于浩然, 张禹, 潘炳成. 基于Fluent的碟形水下机器人黏性流场阻力分析[J]. 机械工程师, 2021(9): 79-81.
[2] 白航, 王伟竹, 姚清河. 某水下机器人阻力特性的数值模拟[J]. 中山大学学报(自然科学版), 2018, 57(1): 150-159.
[3] 肖昌润, 刘瑞杰, 许可, 等. 潜艇旋臂回转试验数值模拟[J]. 江苏科技大学学报(自然科学版), 2014, 28(4): 313-316.
[4] 易文彬, 王永生, 彭云龙, 等. 考虑航行姿态的船模阻力及流场数值预报[J]. 海军工程大学学报, 2016, 28(5): 26-30+56.
[5] 王兴茹. 潜艇尾流空间演化及流场特性仿真分析[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[6] XAVIER L, QUAN Z L, CHRISTOPHER C, et al. Comparisons between seabed and free surface effects on underwater vehicle hydrodynamics[J]. International Journal of Naval Architecture and Ocean Engineering, 2022, 14: 100482.
[7] 张思聪. 多种航行条件下潜航器的偏航运动及其水动力特性研究[D]. 兰州: 兰州理工大学, 2020.
[8] 张怀新, 潘雨村. 圆碟形潜水器阻力性能研究[J]. 上海交通大学学报, 2006, 40(6): 978-982+987.
[9] ABEDI S, DEHGHAN A A, SAEIDINEZHAD A, et al. Effects of bulbous bow on cross-flow vortex structures around a streamlined submersible body at intermediate pitch maneuver: A numerical investigation[J]. Journal of Marine Science & Application, 2016, 15(1): 8-15.
[10] SEO J, SEOL D M, HAN B, et al. Turbulent wake field reconstruction of VLCC models using two-dimensional towed underwater PIV measurements[J]. Ocean Engineering, 2016, 118: 28-40.
[11] WATSON N A, KELLY M F, OWEN I, et al. Computational and experimental modelling study of the unsteady airflow over the aircraft carrier HMS Queen Elizabeth[J]. Ocean Engineering, 2018, 172(JAN.15): 562-574.
[12] 吴建威, 余昊成, 王赟等. 连续分层环境中Suboff激发的自由面尾迹数值仿真[J]. 舰船科学技术, 2021, 43(21): 20-26.
WU J H, YU H C, WANG Y, et al. Numerical simulation of free surface wake excited by Suboff in continuous layered environment[J]. Ship Science and Technology, 2021, 43(21): 20-26.
[13] 蒋永旭, 付翯翯, 俞剑. 基于CFD的客滚船上层建筑风阻计算及优化设计[J]. 船海工程, 2023, 52 (4): 120-123.
[14] RODDY R F . Investigation of the stability and control characteristics of several configurations of the DARPA SUBOFF[C]//Departmental Report. Ship Hydromechanics Department. David Taylor Research Center. Maryland, 1990.
[15] SHENG C, TAYLOR L K, WHITFIELD D L. Multiblock multigrid solution of three-dimensional incompressible Turbulent Flow About Appended Submarine Configurations[C]//33rd AIAA Aerospace Sciences Meeting Conference and Exhibit, 1995.
[16] 谢云平, 曹镒铭, 李悦泽, 等. 基于阻力的V型艇折角线及其参数研究 [J]. 舰船科学技术, 2023, 45 (16): 13-16.
XIE Y P, CAO Y M, LI R Z, et al. Research on bending line and parameters of V-shaped boat based on resistance [J]. Ship Science and Technology 2023, 45 (16): 13-16
[17] 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报, 2020, 38(3): 413-431+478.