声学黑洞效应常用于结构的振动控制,因其特殊的构造形式往往会导致结构强度减弱。本文提出一种内嵌环肋双叶声学黑洞的圆柱壳体设计,以降低结构中弯曲波的传播,为回转体结构的减振降噪提供新的解决思路。与传统均质圆柱壳相比,该设计显著抑制了弯曲波的传递。通过控制变量法,研究截断厚度、幂律指数和环肋宽度结构参数对振动传播的影响。结果表明,增加截断厚度和环肋宽度会将振动传输衰减的峰值移向高频,而提高幂律指数则使衰减峰移至低频。同时,结合声学黑洞聚波特性在特定区域附加阻尼层,通过仿真验证了其减振效果,证明阻尼层可在部分频率下进一步提升振动衰减。
The acoustic black hole effect is commonly used for vibration control of structures, which often leads to weakening of structural strength due to its special construction form. In this paper, a cylindrical shell design with embedded ring-ribbed double-leaf acoustic black holes is proposed to reduce the propagation of bending waves in the structure and provide a new solution idea for vibration and noise reduction of rotating body structures. The design significantly suppresses the transmission of bending waves compared to the conventional homogeneous cylindrical shell. The effects of the structural parameters of truncation thickness, power-law exponent and annular rib width on vibration propagation were investigated by the control variable method. The results show that increasing the truncation thickness and ring rib width shifts the peak of vibration transmission attenuation to high frequencies, while increasing the power-law index shifts the attenuation peak to low frequencies. At the same time, the damping layer is attached to a specific region in combination with the acoustic black hole wave gathering property, and its vibration damping effect is verified by simulation, which proves that the damping layer can further enhance the vibration attenuation at some frequencies.
2025,47(4): 66-70 收稿日期:2024-3-5
DOI:10.3404/j.issn.1672-7649.2025.04.011
分类号:U663.1
基金项目:国家自然科学基金资助项目(52001145)
作者简介:郭佳明(1999-),男,硕士研究生,研究方向为船舶减振降噪
参考文献:
[1] MIRONOV M A. Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval[J]. Soviet Physics: Acoustics, 1988, 34(3): 318-319.
[2] KRYLOV V V, WINWARD R E T B. Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates[J]. Journal of Sound and Vibration, 2007, 300(1): 43-49.
[3] ZHAO J, HUANG Y, YUAN W, et al. Broadband acoustic black hole for wave focusing and weak signal sensing[J]. Applied Acoustics, 2022, 200: 109078.
[4] MA L, ZHOU T, CHENG L. Acoustic Black hole effects in Thin-walled structures: Realization and mechanisms[J]. Journal of Sound and Vibration, 2022, 525: 116785.
[5] WANG D-W, MA L, WANG X-T, et al. Sound transmission loss of laminated composite sandwich structures with pyramidal truss cores[J]. Composite Structures, 2019, 220: 19-30.
[6] JI H, LIANG Y, QIU J, et al. Enhancement of vibration based energy harvesting using compound acoustic black holes[J]. Mechanical Systems and Signal Processing, 2019, 132: 441-456.
[7] BOWYER E P, KRYLOV V V. Experimental investigation of damping flexural vibrations in glass fibre composite plates containing one- and two-dimensional acoustic black holes[J]. Composite Structures, 2014, 107: 406-415.
[8] BAO Y, YAO Z, ZHANG Y, et al. Ultra-broadband gaps of a triple-gradient phononic acoustic black hole beam[J]. International Journal of Mechanical Sciences, 2024, 265: 108888.
[9] 陈昌雄, 丁栋, 刘子豪, 等. 内嵌环肋结构声学黑洞消音器设计及优化[J]. 舰船科学技术, 2023, 45(16): 112-119.
CHEN C X, DING D, LIU Z H, et al. Design and optimization of acoustic black hole silencer with embedded ring rib structure[J]. Ship Science and Technology, 2023, 45(16): 112-119.
[10] LI M, DENG J, ZHENG L, et al. Vibration mitigation via integrated acoustic black holes[J]. Applied Acoustics, 2022, 198: 109001.
[11] 马锐磊, 田丰华, 刘一鸣, 等. 鱼雷自导新型基阵支撑结构减振设计及性能研究[J]. 舰船科学技术, 2023, 45(15): 163-167.
MA R L, TIAN F H, LIU Y M, et al. Study on vibration damping design and performance of a new type of base array support structure for torpedo self-guiding[J]. Ship Science and Technology, 2023, 45(15): 163-167.
[12] BAO Y, LIU X, YAO Z, et al. Damping evolution mechanism of panel embedded with heterogeneous acoustic black hole array[J]. Acta Mechanica Sinica, 2023, 39(3): 522270.
[13] DENG J, GUASCH O, MAXIT L, et al. Reduction of Bloch-Floquet bending waves via annular acoustic black holes in periodically supported cylindrical shell structures[J]. Applied Acoustics, 2020, 169: 107424.
[14] 魏建红, 向阳, 廖琳, 等. 声学黑洞在圆柱壳上的应用及结构优化研究[J]. 噪声与振动控制, 2023, 43(5): 59-65.
WEI J H, XIANG Y, LIAO L, et al. Application and structural optimization of acoustic black holes to cylindrical shells[J]. Noise and Vibration Control, 2023, 43(5): 59-65.