船舶微电网中,发电燃气轮机性能与电力系统储能模式和负载的变化特性密切相关。为研究混合储能对不同脉冲负载下发电燃气轮机性能的影响规律,提高燃机运行稳定性与效率,基于100 kW实装微型燃气轮机发电机组,建立包括燃气轮机、同步发电机、飞轮储能与蓄电池储能系统的直流微电网模型。通过加载峰值功率20 kW、占空比为60%脉冲负载时系统的仿真和试验数据对比,验证了燃气轮机发电系统模型的仿真精度。进一步在不同储能模式(无储能、蓄电池储能、飞轮储能、混合储能)以及脉冲负载不同占空比(40%、60%、80%)条件下,对微型燃气轮机和电网响应特性进行仿真分析。结果表明,燃气轮机发电系统结合混合储能,相较于单储能模式能有效提高燃气轮机及电网运行的可靠性;且燃气轮机发电系统更适合在高占空比脉冲负载的情况下运行,燃机性能得以发挥且电网系统能够最大限度保持稳定。
In shipboard microgrids, the performance of gas turbine generators is closely related to the energy storage modes and varying characteristics of the power system load. To study the influence of hybrid energy storage on gas turbine generator performance under different pulse load conditions, and to improve turbine operational stability and efficiency, we established a direct current (DC) microgrid model including a 100 kW installed micro gas turbine generator unit, synchronous generator, flywheel energy storage, and battery energy storage system. Through simulation and experimental data comparison under a peak power load of 20 kW with a 60% duty cycle pulse load, the simulation accuracy of the gas turbine generator system model was verified. Further simulation analysis was conducted under different energy storage modes (without energy storage; with battery, flywheel, and hybrid energy storage systems respectively) and different pulse load duty cycles (40%, 60%, 80%). The results showed that combining gas turbine generator systems with hybrid energy storage, compared to single energy storage modes, effectively improves the reliability of gas turbines and the power grid operation. Moreover, the gas turbine generator system is more suitable for operation under high-duty cycle pulse loads, allowing the turbine performance to be fully utilized while maintaining maximum stability of the electrical grid system.
2025,47(4): 96-104 收稿日期:2024-5-1
DOI:10.3404/j.issn.1672-7649.2025.04.016
分类号:U665.11
基金项目:海军工程大学自主研发项目(2023DY010)
作者简介:丁泽民(1984-),男,博士,副教授,研究方向为燃气轮机发电系统控制与仿真优化
参考文献:
[1] 闫飞飞, 陈圣东, 刘亚丽. 新型船舶综合电力系统的运行分析及发展[J]. 舰船电子工程, 2013, 33(6): 14-15.
YAN F F, CHEN S D, LIU Y L. Operation analysis and development of new integrated power system for marine applications[J]. Ship Electronic Engineering, 2013, 33(6): 14-15.
[2] AZIZI M A, BROUWER J. Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization[J]. Applied Energy, 2018, 215: 237-289.
[3] LU M, LI X, LI F. Robust optimal scheduling of integrated energy systems based on hybrid energy storage and multiple time scales[C]//2020 IEEE Sustainable Power and Energy Conference (iSPEC). IEEE, 2020: 1404-1411.
[4] 曾维伦, 王旭升, 吕小静, 等. 基于模糊PID的微型燃气轮机发电机组控制性能研究[J]. 热能动力工程, 2021, 36(10): 212-221.
ZENG W L, WANG X S, LV X J, et al. Research on control performance of micro gas turbine generator set based on fuzzy PID[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(10): 212-221.
[5] 朱育男. 基于飞轮储能的微型燃气轮机发电补偿系统[D]. 长沙: 湖南大学, 2020.
[6] 李月明, 丁泽民, 余又红, 等. 基于飞轮储能的船用燃机直流微电网大功率负载响应特性[J]. 舰船科学技术, 2023, 45(17): 103-111.
LI Y M, DING Z M, YU Y H, et al. Response characteristics of high-power load in marine gas turbine DC microgrid based on flywheel energy storage[J]. Ship Science and Technology, 2023, 45(17): 103-111.
[7] 于海, 孙亮, 岳云凯, 等. 基于微型燃气轮机的多微源直流微网主从协调控制[J]. 电力工程技术, 2019, 38(6): 107-114.
YU H, SUN L, YUE Y K, et al. Master-slave coordinated control of multi-microsource DC microgrid based on micro gas turbine[J]. Electric Power Engineering Technology, 2019, 38(6): 107-114.
[8] BONFIGLIO A, CACCIACARNE S, INVERNIZZI M, et al. A sliding mode control approach for gas turbine power generators[J]. IEEE Transactions on Energy Conversion, 2019, 34(2): 921-932.
[9] FADDEL S, SAAD A A, YOUSSEF T, et al. Decentralized control algorithm for the hybrid energy storage of shipboard power system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 8(1): 720-731.
[10] LI S, AMRAEE T. Primary frequency support in unit commitment using a multi-area frequency model with flywheel energy storage[J]. IEEE Transactions on Power Systems, 2021, 36(6): 5105-5119.
[11] BELLACHE K, CAMARA M B, DAKYO B. Transient power control for diesel-generator assistance in electric boat applications using supercapacitors and batteries[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 6(1): 416-428.
[12] HOU J, SUN J, HOFMANN H. Control development and performance evaluation for battery/flywheel hybrid energy storage solutions to mitigate load fluctuations in all-electric ship propulsion systems[J]. Appl. Energy, 2018, 212: 919-930.
[13] 刘永葆, 王强, 贺星, 等. 飞轮储能对船用燃气轮机发电系统稳定性影响的仿真研究[J]. 海军工程大学学报, 2017, 29(6): 60-66.
LIU Y B, WEN Q, HE X, et al. Simulation study on the impact of flywheel energy storage on the stability of marine gas turbine power generation system[J]. Journal of Naval University of Engineering, 2017, 29(6): 60-66.
[14] 李浩冬, 刘永葆, 贺星. 微型燃气轮机动态特性仿真[J]. 舰船科学技术, 2020, 42(21): 91-95.
LI H D, LIU Y B, HE X. Simulation of dynamic characteristics of micro gas turbine[J]. Ship Science and Technology, 2020, 42(21): 91-95.
[15] 宋玲燕, 赵兴勇, 高兰香, 等. 基于飞轮储能的直流微电网虚拟惯量自适应控制策略[J]. 电气自动化, 2023, 45(6): 45-48.
SONG L Y, ZHAO X Y, GAO L X, et al. Virtual inertia adaptive control strategy for DC microgrid based on flywheel energy storage[J]. Electric Automation, 2023, 45(6): 45-48.
[16] HAN Y, LI Q, WANG T H, et al. Multi source coordination energy management strategy based on SOC consensus for a PEMFC-battery-supercapacitor hybrid tramway[J].IEEE Transactions on Vehicular Technology, 2018, 67(1): 296-305.
[17] LI Y, DING Z, YU Y, et al. Coordinated control of engine-load-storage for marine micro gas turbine power generation system [C]//International Conference on Wireless Power Transfer. Singapore: Springer Nature Singapore, 2023.
[18] XU L N, MATAS J, WEI B Z, et al. Sliding mode control for pulsed load power supply converters in DC shipboard microgrids [J]. International Journal of Electrical Power and Energy Systems, 2023, 151: 109118.
[19] YANG R, LIU Y, YU Y, et al. Hybrid improved particle swarm optimization-cuckoo search optimized fuzzy PID controller for micro gas turbine[J]. Energy Reports, 2021, 7: 5446-5454.