本文旨在解决船用发电湿汽轮机系统在使用传统模型和数字驱动方法时,数据完整性和动态仿真精度方面存在局限性的问题。在船用发电湿汽轮机物理试验平台的基础上,采用模块化建模方法,结合自顶向下的需求分析策略和自下而上的建模思想,明确模型的功能要求,并逐步完成各设备模块功能的调试和组合。分析结果显示,静态和变工况仿真结果的数据误差均低于5%,且在变工况下与实际机组情况基本一致。这些仿真结果能够较为真实地反映系统的运行状况,能够为后续船舶动力数字孪生系统的建立和虚实交互提供了基础。
This paper aims to address the limitations in data integrity and dynamic simulation accuracy of marine wet steam turbine systems when utilizing traditional models and digital-driven methods. By utilizing a modular modeling approach built upon the physical experimental system of a marine wet steam turbine for power generation, combined with a top-down requirement analysis strategy and bottom-up modeling approach, the functional requirements of the model were clearly defined, and the debugging and integration of various equipment modules were gradually completed. The analysis results demonstrate that the data errors of both static and variable operating condition simulation results are below 5%, and they closely align with the actual turbine operation under variable conditions. These simulation results provide a realistic reflection of the system's operational status, forming the foundation for the subsequent establishment and virtual-real interaction of a digital twin system for marine power system.
2025,47(4): 105-111 收稿日期:2024-4-15
DOI:10.3404/j.issn.1672-7649.2025.04.017
分类号:U664.113
基金项目:湖北省自然科学基金资助项目(2022CFB939)
作者简介:王劲韬(1999-),男,硕士研究生,研究方向为数字孪生技术的应用
参考文献:
[1] 上官端森. 面向机电系统状态监控和诊断的数字孪生关键技术研究[D]. 武汉: 华中科技大学, 2022.
[2] 龚梅杰. 核动力二回路系统仿真快速建模技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
[3] 胡锦晖, 胡大斌, 何其伟. 某型船舶动力装置建模及仿真[J]. 大连海事大学学报, 2015, 41(2): 17-22.
HU J H, HU D B, HE Q W. Modeling and simulation of a ship’s power plant[J]. Journal of Dalian Maritime University, 2015, 41(2): 17-22.
[4] 李炳楠, 朱峰, 燕志伟, 等. 超临界火电机组协调系统建模及模型预测控制算法研究[J]. 热能动力工程, 2020, 35(2): 117-125.
LI B N, ZHU F, YAN Z W, et al. Research on modeling and model predictive control algorithm for supercritical thermal power unit coordination system[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(2): 117-125.
[5] 王兴刚, 石帅, 程小亮, 等. 发电功率快速扰动时舰用蒸汽动力系统的动态特性仿真[J]. 中国舰船研究, 2021, 16(S1): 121-126.
WANG X G, SHI S, CHENG X L, et al. Simulation of dynamic characteristics of marine steam power system under rapid power generation disturbance[J]. Chinese Journal of Ship Research, 2021, 16(S1): 121-126.
[6] 戴立坤. 大型船舶核汽轮机的建模与仿真[J]. 舰船科学技术, 2016, 38(24): 31-33.
DAI L K. Modeling and simulation of large marine nuclear steam turbine[J]. Ship Science and Technology, 2016, 38(24): 31-33.
[7] 廖诗武, 曾凯文, 姚伟, 等. 火电快速甩负荷机组动态仿真建模[J]. 电工技术学报, 2017, 32(4): 212-220.
LIAO S W, ZENG K W, YAO W, et al. Dynamic model for thermal units with fast cut back function[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 212-220.
[8] 张思兵. 船舶核动力二回路热力系统建模与仿真[D]. 哈尔滨: 哈尔滨工程大学, 2015.
[9] 莫慧敏, 苏学丰. 核电站汽轮机的建模与仿真[J]. 计算机仿真, 2013, 30(8): 131-134.
MO H M, SU X F. Modeling and simulation of nuclear power plant steam turbine[J]. Computer Simulation, 2013, 30(8): 131-134.
[10] 熊曹丰收, 刘强, 金家善. 船舶动力装置滑油系统滑油压力动态仿真研究[C]// 第二十届中国系统仿真技术及其应用学术年会论文集(20th CCSSTA 2019), 2019.
[11] 尹二新, 张同卫, 唐坚, 等. 火电机组过程大数据建模方法研究[J]. 电力大数据, 2019, 22(10): 30-35.
YIN E X, ZHANG T W, TANG J, et al. Research on big data modeling method of thermal power plant process[J]. Power Systems and Big Data, 2019, 22(10): 30-35.
[12] 陈铭治, 胡以怀, 王兆强. LNG船主汽轮机系统运行仿真[J]. 造船技术, 2015(1): 79-83+96.
CHEN M Z, HU Y H, WANG Z Q. Running simulation of main steam turbine system in LNG ship simulator[J]. Marine Technology, 2015(1): 79-83+96.
[13] CELIS C, PINTO G R S, TEIXEIRA T, et al. A steam turbine dynamic model for full scope power plant simulators[J]. Applied Thermal Engineering, 2017, 120: 593-602.
[14] 周少伟, 吴炜, 张涛, 等. 舰船动力系统数字孪生技术体系研究[J]. 中国舰船研究, 2021, 16(2): 151-156.
ZHOU Shaowei, WU Wei, ZHANG Tao, et al, Digital twin technical system for marine power systems [J]. Chinese Journal of Ship Research, 2021, 16(2): 151-156.
[15] 张皓宇. 基于Modelica/Mworks的船用汽轮机级图形化建模与仿真[J]. 机电设备, 2022, 39(4): 97-102.
ZHANG H Y. Graphic modeling and simulation of marine steam turbine stage based on modelica/mworks[J]. Mechanical and Electrical Equipment, 2022, 39(4): 97-102.
[16] 陈立平, 周凡利, 丁建完. 工程物理系统建模理论与方法[M]. 北京: 清华大学出版社, 2022.
[17] 曾国庆, 马国程, 张磊, 等. 基于多领域建模的船舶凝给水系统虚实映射方法[J]. 中国舰船研究, 2022, 17(S1): 81-91+98.
ZENG G Q, MA G C, ZHANG L, et al. Virtual real mapping method condensate feedwater system based on multi-domain modeling[J]. Chinese Journal of Ship Research, 2022, 17(S1): 81-91+98.
[18] 曾国庆, 陈国兵, 李军, 等. 基于Modelica的船舶凝汽器动态特性分析[J]. 舰船科学技术, 2022, 44(23): 104-108.
ZENG G Q, CHEN G B, LI J, et al. Dynamic characteristics analysis of marine condenser based on Modelica[J]. Ship Science and Technology, 2022, 44(23): 104-108.
[19] 王新军, 李亮, 宋立明. 汽轮机原理[M]. 西安: 西安交通大学出版社, 2014.