船舶电力系统出现突发性负载时,发电机功率分配不均,会导致某些发电机承担过多的电流负载,出现过载现象,为解决此问题,研究船舶同步发电机暂态功率均分控制方法。模拟同步发电机的转子运动方程,建立虚拟同步发电机,利用虚拟同步发电机通过下垂控制方法,按照每个虚拟同步发电机容量状态,设定等效下垂系数,调节各个发电机输出功率,便可完成暂态功率均分控制,为避免出现功率过冲,为虚拟同步发电机增设相同标幺值的虚拟电感,调整各发电机之间的阻抗匹配关系,保证船舶同步发电机暂态功率合理的均分控制。实验结果显示,该方法在暂态功率均分控制时,同步发电机功率分配均衡,未出现发电机过载情况,且并联同步发电机之间的并联环流数值波动平稳、输出电压稳定,暂态功率均分控制效果理想。
When sudden loads occur in the ship's power system, uneven power distribution among generators can lead to some generators bearing excessive current loads, resulting in overload. To solve this problem, a transient power sharing control method for ship synchronous generators is studied. This method simulates the rotor motion equation of a synchronous generator, establishes a virtual synchronous generator, and uses the droop control method to set the equivalent droop coefficient according to the capacity state of each virtual synchronous generator. By adjusting the output power of each generator, transient power sharing control can be completed. To avoid power overshoot, virtual inductors with the same standard value are added to the virtual synchronous generator, and the impedance matching relationship between each generator is adjusted to ensure reasonable sharing control of transient power of ship synchronous generators. The experimental results show that this method achieves balanced power distribution in synchronous generators during transient power sharing control. In the event of generator overload, the parallel circulating current values between parallel synchronous generators fluctuate steadily, and the output voltage is stable. Therefore, the transient power sharing control effect is ideal.
2025,47(4): 112-116 收稿日期:2023-12-18
DOI:10.3404/j.issn.1672-7649.2025.04.018
分类号:TM464
基金项目:甘肃省青年科技基金资助项目(23JRRA1710)
作者简介:董刚(1983-),男,高级工程师,研究方向为电学计量
参考文献:
[1] 王彦, 房向前, 王怡, 等. 大型船舶轴带发电机加装设计[J]. 船海工程, 2023, 52(3): 7-12.
WANG Y, FANG X Q, WANG Y, et al. Design of refitting the shaft generator on large vessels[J]. Ship & Ocean Engineering, 2023, 52(3): 7-12.
[2] 兰征, 龙阳, 曾进辉, 等. 考虑超调的虚拟同步发电机暂态功率振荡抑制策略[J]. 电力系统自动化, 2022, 46(11): 131-141.
LAN Z, LONG Y, ZENG J H, et al. Transient power oscillation suppression strategy of virtual synchronous generator considering overshoot[J]. Automation of Electric Power Systems, 2022, 46(11): 131-141.
[3] 陈谦, 周文海, 何承树, 等. 采用三阶模型的虚拟同步发电机功率振荡特性分析及附加阻尼控制[J]. 高电压技术, 2023, 49(2): 682-690.
CHEN Q, ZHOU W H, HE C S, et al. Characteristics analysis and suppression of power oscillation of virtual synchronous generator using three-order model[J]. High Voltage Engineering, 2023, 49(2): 682-690.
[4] 高长伟, 黄翀阳, 郭丹, 等. 基于导前微分控制的虚拟同步发电机功频特性控制策略[J]. 太阳能学报, 2023, 44(4): 359-370.
GAO C W, HUANG C Y, GUO D, et al. Power frequency characteristic control strategy of virtual synchronous generator based on leading differential control[J]. Acta Energiae Solaris Sinica, 2023, 44(4): 359-370.
[5] PITAMBAR J, DAVID T O, OYEDOKUN H K C. Dynamic response of power systems with real GICs: impact on generator excitation control[J]. IEEE Transactions on Power Delivery, 2022, 37(6): 4911-4922.
[6] 周坤欣, 商迪, 林叶锦, 等. 电力推进船舶仿真及能效优化方法[J]. 中国航海, 2022, 45(3): 123-128.
ZHOU K X, SHANG D, LIN Y J, et al. Simulation of electrically-propelled ships and its energy efficiency optimization[J]. Navigation of China, 2022, 45(3): 123-128.
[7] 柴秀慧, 张纯江, 杨春来, 等. 基于虚拟功率的虚拟同步发电机预同步控制策略[J]. 电力电子技术, 2022, 56(5): 38-40.
CHAI X H, ZHANG C J, YANG C L, et al. Presynchronous control strategy of virtual synchronous generator based on virtual power[J]. Power Electronics, 2022, 56(5): 38-40.