船舶交通密度的增大会直接影响船舶航行的安全性,本文提出一种基于大数据挖掘技术的船舶会遇热点区域分析方法,首先将AIS数据、雷达数据以及图像数据作为船舶会遇热点区域分析的数据来源,并提出一种多源数据的预处理和融合方法。定义了3种船舶会遇基本特征,探讨了船舶属性、环境属性和船舶会遇之间的关联规则,在此基础上使用K-means聚类算法对船舶会遇热点区域进行分析,结果表明本文提出的方法可以有效对船舶会遇热点区域进行分析和标定,有效降低会遇热点区域的船舶碰撞概率。
The increase in ship traffic density will directly affect the safety of ship navigation. This article proposes a method for analyzing the hot spot areas of ship encounters based on big data mining technology. Firstly, AIS data, radar data, and image data are used as the data sources for analyzing the hot spot areas of ship encounters, and a preprocessing and fusion method for multi-source data is proposed. Three basic characteristics of ship encounters are defined, the association rules among ship attributes, environmental attributes and ship encounters are discussed. On this basis, the K-means clustering algorithm is used to analyze the hot spot areas of ship encounters. The results show that the method proposed in this article can effectively analyze and calibrate the hot spot areas of ship encounters and effectively reduce the probability of ship collisions in the encounter hot spot areas.
2025,47(4): 168-172 收稿日期:2024-3-20
DOI:10.3404/j.issn.1672-7649.2025.04.027
分类号:U675.7
作者简介:陈麒龙(1988-),男,硕士,实验师,研究方向为大数据与应用统计
参考文献:
[1] 李东枫. 基于AIS大数据的船舶危险会遇热点区域挖掘研究[D]. 广州: 华南理工大学, 2017.
[2] 张哲. 基于历史数据挖掘的海上船舶交通事故预测[J]. 舰船科学技术, 2024, 46(14): 174-177.
ZHANG Z. Prediction of marine ship traffic accidents based on historical data mining[J]. Ship Science and Technology, 2024, 46(14): 174-177.
[3] 安健鹏, 李海霞, 雷亚丽, 等. 基于大数据的船舶活动轨迹规律挖掘方法[J]. 火力与指挥控制, 2024, 49(4): 156-163.
[4] 钟璐潞. 大数据可视化分析及展现在珠江航运精准监管场景中的应用研究[J]. 中国水运, 2023(9): 45-47.
[5] 赵琳. 基于数据挖掘的船舶通信网络信号传输数学模型[J]. 舰船科学技术, 2023, 45(19): 169-172.
[6] 李朝阳. 基于大数据分析的船舶运输可持续性研究[J]. 珠江水运, 2023(13): 29-31.
[7] 马昊, 贾大山, 朱吉双. 基于AIS数据的港口船舶服务效率智能测算方法[J]. 中国航海, 2023, 46(2): 99-105.
[8] 钮晓浩. 大数据在船舶港内操纵避碰方面的应用[J]. 中国航务周刊, 2023(19): 46-48.