为对随机振动工况下的船舶结构寿命预测建立数学模型,由于试验条件的限制,以标准试验件为研究对象进行随机振动工况下的疲劳寿命预测,基于临界平面法,结合随机过程谱矩理论以及Minner线性疲劳累积理论,建立了一个随机振动疲劳寿命预测模型。开展了试验件模态试验以及随机振动疲劳试验,得到了试验件在平直谱频段范围均为70~150 Hz,峰值分别为0.15、0.25、0.35 g2/Hz工况下的疲劳寿命。预测模型的计算结果表明,试验件在3种工况下的疲劳寿命试验值与预测值误差分别为1.83倍、1.70倍、1.89倍,均在2.5倍误差带以内,说明了该预测模型在试验件悬臂梁安装形式随机振动工况下寿命预测的可行性,对处于多轴随机振动工况下的船舶结构寿命预测具有一定的借鉴意义。
To establish a mathematical model for predicting the service life of ship structures under random vibration conditions, due to the limitations of experimental conditions, a random vibration fatigue life prediction model was established for standard test pieces by combining the critical plane method, the theory of random process spectrum moments, and Minner's linear fatigue accumulation theory. The modal test and random vibration fatigue test of the test piece were carried out. The fatigue life of the test piece was obtained in the straight spectrum frequency range of 70-150 Hz, and the peak values were 0.15, 0.25 and 0.35 g2/Hz, respectively. The calculation results of the prediction model show that the error between the experimental value and the predicted value of the fatigue life of the test piece under the three working conditions is 1.83 times, 1.70 times and 1.89 times respectively, all within the error band of 2.5 times, which shows the feasibility of the prediction model in the random vibration condition of the cantilever beam installation form of the test piece,It can be used as a reference for the life prediction of marine pressurization pipes and other marine components under multi-axis random vibration conditions.
2025,47(6): 1-6 收稿日期:2024-6-2
DOI:10.3404/j.issn.1672-7649.2025.06.001
分类号:U612.3
作者简介:邢雪(1993 – ),女,博士,工程师,研究方向为空气/流体噪声设计
参考文献:
[1] 方磊, 王士伦. 基于疲劳强度的船舶甲板支撑结构设计[J]. 舰船科学技术, 2022, 44(6): 50-53.
FANG L, WANG S L. Design of ship deck support structure based on fatigue strength[J]. Ship Science and Technology, 2022, 44(6): 50-53.
[2] 张清越. 大型小水线面双体船结构疲劳强度分析[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[3] 黄国兵. 轴系扭转振动仿真方法及应用研究[D]. 武汉: 武汉理工大学, 2021.
[4] 尚德广, 王德俊. 多轴疲劳强度[M]. 北京: 科学出版社, 2007.
[5] 时新红, 鲍蕊. 多轴高周疲劳失效准则的对比分析[J]. 航空动力学报, 2020, 23(11): 2007-2015.
SHI X H, BAO R. Comparative analysis of multi-axis high-cycle fatigue failure criteria[J]. Journal of Aerospace Power, 2020, 23(11): 2007-2015.
[6] 王英玉. 金属材料的多轴疲劳行为与寿命估算[D]. 南京: 南京航空航天大学, 2005.
[7] PETRUCCI G, ZUCCARELLO B. Fatigue life prediction under wide band random loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 27(12): 1183-1195.
[8] 高代杨. 结构多轴振动疲劳寿命预测的频域法[D]. 南京: 南京航空航天大学, 2019.
[9] 詹浩. 多轴随机载荷下转向节疲劳寿命预测方法研究[D]. 秦皇岛: 燕山大学, 2022
[10] 金南. 一种确定结构随机振动疲劳的临界平面法研究[D]. 南京: 南京航空航天大学, 2019.
[11] 贺光宗, 陈怀海. 多轴向与单轴向随机振动疲劳试验对比研究[J]. 振动工程学报, 2015, 28(5): 754-761.
HE G Z, CHEN H H. A Comparative study of multi-axial and Uniaxial random vibration fatigue Tests[J]. Journal of Vibration Engineering, 2015, 28(5): 754-761.
[12] 贺光宗, 陈怀海, 贺旭东. 多轴向随机激励下结构疲劳失效的判定方法[J]. 振动测试与诊断, 2015, 35(3): 448-452.
HE G Z, CHEN H H, HE X D. Determination method for fatigue failure of structures under multi-axial random excitation[J]. Journal of Vibration Measurement and Diagnosis, 2015, 35(3): 448-452.
[13] 贺光宗, 陈怀海, 贺旭东. 一种多轴向随机激励下结构疲劳寿命分析方法[J]. 振动与冲击, 2015, 34(7): 59-66.
HE G Z, CHEN H H, HE X D. A method for fatigue life analysis of structures under multi-axial random excitation[J]. Journal of Vibration and Shock, 2015, 34(7): 59-66.
[14] 斐晨晖, 何欢, 何国平. 基于临界面的多轴振动疲劳寿命预测[J]. 装备环境工程, 2020, 17(9): 95-99.
FEI C H, HE H, HE G P. Fatigue life prediction based on multi-axial vibration of critical surface[J]. Equipment Environmental Engineering, 2020, 17(9): 95-99.