水面舰船作战时容易受到水下爆炸载荷作用,对其局部强度及总纵强度产生影响。对于舰船结构损伤机理及特性的研究,一般采用简化船体梁模型。本文首先对采用的耦合的欧拉-拉格朗日方法进行验证。然后,对水下爆炸载荷作用下船体梁动态响应开展研究。此外,采用JWL方程作为炸药的状态方程,用以模拟冲击波载荷与气泡载荷的联合作用。结果表明,在本文工况条件下,冲击波载荷未对船体梁结构产生明显破坏,气泡载荷作用下船体梁产生明显的中拱、中垂变形,尤其是气泡收缩阶段,船体梁产生严重的中垂变形,进而形成塑性铰。此外,虽然冲击波载荷未对结构产生明显的破坏,但是其作用阶段船体梁结构上产生较高的加速度。
Warships are susceptible to underwater explosive loads during combat, which can affect their local strength and overall longitudinal strength. A simplified model called ship hull girder is used to study the deformation mechanism of the warships in this paper. The coupled Eulerian-Lagrangian method used in this paper is validated firstly. Subsequently, researches on the dynamic response of ship hull girder under underwater explosion loads were conducted. The JWL equation is used to simulate the combined effects of shock wave and bubble. The results show that under the working conditions studied in this paper, the shock wave load did not cause significant damage to the ship hull girder. Due to bubble load, significant hogging and sagging deformation was conducted, especially a plastic hinge occurs during the bubble collapse stage. In addition, higher acceleration on the ship hull girder is generated by shock wave load.
2025,47(6): 7-12 收稿日期:2024-3-23
DOI:10.3404/j.issn.1672-7649.2025.06.002
分类号:U663.2
作者简介:甘宁(1993 – ),男,博士,工程师,研究方向为舰艇总体技术
参考文献:
[1] 张阿漫. 水下爆炸气泡三维动态特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2006.
[2] 崔杰. 近场水下爆炸气泡载荷及对结构毁伤试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
[3] 牟金磊, 朱石坚, 刁爱民, 等. 边界条件对水下爆炸气泡运动特性的影响分析[J]. 振动与冲击, 2014, 33(13): 92-97.
[4] 李海涛, 王俊森, 牟金磊, 等. 水下爆炸作用下箱型梁整体损伤的参数分析[J]. 华中科技大学学报(自然科学版), 2013, 41(4): 123-127.
[5] Ching-YuHsu, Cho-ChungLiang, Anh-TuNguyen, et al. A numerical study on the underwater explosion bubble pulsation and the collapse process[J]. Ocean Engineering, 2014, 81(2014): 29-38.
[6] 李健, 潘力, 林贤坤, 等. 近自由面水下爆炸气泡与结构相互作用数值计算研究[J]. 振动与冲击, 2015, 34(18): 13-18.
[7] 金辉, 周学滨, 管起亮, 等. 水下爆炸气泡射流对船体破坏效应研究[J]. 爆破, 2015, 32(2): 47-50.
[8] 张弩, 宗智. 水下爆炸气泡载荷对舰船的总体毁伤研究[J]. 中国造船, 2012, 53(3): 28-39.
[9] CHEN Y, TONG Z P, HUA H X, et al. Experimental investigation on the dynamic response of scaled ship model with rubber sandwich coatings subjected to underwater explosion.[J]. International Journal of Impact Engineering, 2007, 36(2009): 318-328.
[10] ZONG Z. A hydroplastic analysis of a free-free beam floating on water subjected to an underwater bubble[J]. Journal of Fluids and Structures, 2004, 20(2005): 359-372.
[11] ZHANG Z H, WANG Y X, ZHAO H F, et al. An experimental study on the dynamic response of a hull girder subjected to near field underwater explosion[J]. Marine Structures, 2015, 44(2015): 43-60.
[12] 王恒, 朱锡, 牟金磊. 冲击波和气泡脉动联合作用下加筋板的毁伤仿真研究[J]. 船海工程, 2009, 38(4): 92-96.
[13] 张弩, 于馨. 水下爆炸冲击波与气泡载荷作用下船体结构的动响应[J]. 中国舰船研究, 2014, 9(1): 99-104.
[14] 林建中, 等. 流体力学[M]. 北京: 清华大学出版社, 2013.
[15] 门建兵, 蒋建伟, 王树有. 爆炸冲击数值模拟技术基础[M]. 北京: 北京理工大学出版社, 2015.
[16] 师华强, 宗智, 贾敬蓓. 水下爆炸冲击波的近场特性[J]. 爆炸与冲击, 2009, 29(2): 125-130.
[17] Abaqus/CAE 6.14 User’s Guide
[18] KLASEBOER E, HUNG K C, WANG C, et al. Experimential and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure[J]. Journal of Fluid Mechanics, 2005, 537: 387-413.