为了探究潜艇首部舱室破损进水后潜艇操纵性的变化规律,设计了潜艇操纵运动仿真系统,基于建立的潜艇首部舱室破损进水模型,进行正常工况和首部舱室破损进水工况下的水平面回转运动、水平面Z形操舵运动、垂直面梯形操舵运动的仿真,得到了潜艇破舱后操纵性的变化规律。同时,对首部耐压舱室破损进水后不同位置主压载水舱的吹除抗沉响应规律进行研究,得到了在不同速度下不同位置的吹除抗沉效应。在进行首部吹除的同时,研究了在不同航速下不同舵角的运动响应。这些变化规律为潜艇发生首部破舱故障后的操纵控制即应急抗沉提供了有效的理论支持,对提高潜艇的生命力有重要意义。
In order to investigate the changes in submarine maneuverability following flooding of the bow cabin, a simulation system for submarine maneuvering motion was designed. The simulation included horizontal plane rotation motion, horizontal plane Z-shaped steering motion, and vertical plane trapezoid steering motion under both normal working conditions and damaged bow cabin flooding conditions. The resulting variations in submarine maneuverability after bow cabin damage were determined. Additionally, the response rules of the main ballast water tank at different positions following bow cabin damage were studied to assess its anti-settling effects at various speeds. Furthermore, the motion response of different rudder angles during bow blowing was examined. These findings provide valuable theoretical support for emergency anti-sinking control measures in submarines when facing bow failures, thereby enhancing their operational resilience.
2025,47(6): 27-34 收稿日期:2024-4-4
DOI:10.3404/j.issn.1672-7649.2025.06.005
分类号:TP391.9
作者简介:周宗和(1982 – ),男,博士,研究方向为潜艇操纵控制
参考文献:
[1] 张风丽. 潜艇操纵性水动力系数预报方法研究[J]. 中国水运, 2018(1): 13-15.
ZHANG F L. Research on the prediction method of submarine maneuverability hydrodynamic coefficient[J]. China Water Transport, 2018(1): 13-15.
[2] DANCZYK J, JACOBS P, THORNTON C W, et al. Visualizing constraints and awareness of submarine maneuverability and detectability[J]. Procedia Manufacturing, 2015, 3: 5155-5160.
[3] 王鹢, 王文武, 孙枫, 等. 潜艇应急操纵的建模与仿真[J]. 计算机仿真, 2003, 20(6): 1-3.
WANG Y, WANG W W, SUN F, et al. Modeling and simulation of submarine emergency maneuver[J]. Computer Simulation, 2003, 20(6): 1-3.
[4] 韩琨羽. 潜艇六自由度操纵运动预报及动力抗沉数值模拟[D]. 武汉: 武汉理工大学, 2022.
[5] 陈生春, 刘辉, 李其修. 潜艇舱室进水应急起浮时的机动性研究[J]. 船海工程, 2012, 41(4): 168-171.
CHEN S C, LIU H, LI Q X. Research on submarine emergency maneuverability with flooded compartment[J]. Ship and Ocean Engineering, 2012, 41(4): 168-171.
[6] 唐海敬, 朱军. 潜艇动力抗沉非线性效应及计算分析[J]. 中国舰船研究, 2013, 8(6): 63-68.
TANG H J, ZHU J. Evaluation of dynamic anti-sink nonlinear effects for submarines[J]. Chinese Journal of Ship Research, 2013, 8(6): 63-68.
[7] 丁风雷, 张建华, 王顺杰. 潜艇舱室破损时的定深操纵运动仿真分析[J]. 舰船科学技术, 2014, 36(6): 38-41.
DING F L, ZHANG J H, WANG S J, et al. The Simulation and analysis of the fixed-depth motion when submarine’s cabin damaged[J]. Ship Science and Technology, 2014, 36(6): 38-41.
[8] 胡坤, 高胜峰, 张建华. 潜艇水下破损潜坐海底操纵控制仿真研究[J]. 计算机仿真, 2013, 30(2): 34-37.
HU K, GAO S F, ZHANG J H. Simulation on manoeuvre and control of settling on bottom in case of submarine damaged underwater[J]. Computer Simulation, 2013, 30(2): 34-37.
[9] 胡坤, 黄海峰, 何斌等. 潜艇大深度损失浮力仿真分析及操纵方法[J]. 兵器装备工程学报, 2021, 42(2): 29-34.
HU K, HUANG H F, HE B, et al. Study on simulation and manipulation method of submarine loss buoyancy under high depth conditions[J]. Journal of Ordnance Equipment Engineering, 2021, 42(2): 29-34.
[10] 刘辉, 浦金云, 金涛. 破损潜艇应急起浮操纵控制研究[J]. 海军工程大学学报, 2009, 21(1): 96-100.
LIU H, PU J Y, JIN T. Maneuver and control of flooded submarine emergency surfacing[J]. Journal of Naval University of Engineering, 2009, 21(1): 96-100.
[11] PARK J, KIM N, SHIN Y, et al. Experimental study on hydrodynamic coefficients for high-incidence-angle maneuver of a submarine[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(1): 100-113.
[12] KHADHRAOUI A, BEJI L, OTMANE S, et al. Stabilizing control and human scale simulation of a submarine ROV navigation[J]. Ocean Engineering, 2016, 114: 66-78.
[13] CHEN S C, LIU H, LI Q X, et al. Simulation and analysis of flooded submarine emergency surfacing maneuver[J]. Tellus, 2012, 34(2): 142-150.
[14] LIU H, PU J Y, LI Q X, et al. The analysis of flooded submarine motion state varying from different attack angle under blowing ballast tank[J]. Applied Mechanics & Materials, 2013, 336-338: 442-445.