针对中低频宽带噪声控制问题,本文提出一种内嵌多孔的变截面弯折声学超材料。首先采用阻抗转移法和Johnson-Champoux-Allard(JCA)模型构建了变截面弯折超材料单元吸声系数理论模型,设计了在736 Hz处实现0.98的准完美吸声和带宽高达392 Hz高效吸声(吸声系数>0.8)的变截面弯折超材料单元,且厚度仅为48 mm。继而采用有限元方法分析了其宽带高效吸声机理,并验证了理论模型准确性。为了实现中低频超宽带降噪结构的设计,基于临界耦合理论,采用并联耦合的方式实现了424~1500 Hz频率范围内吸声系数0.8以上的中低频超宽带高效吸声复合结构。有限元仿真和实验结果验证了并联变截面弯折吸声复合超材料的吸声效果。所提出的变截面弯折超材料复合结构具有吸声性能好、吸声带宽宽、结构制造简单等特点,可为中低频宽带噪声控制技术提供理论基础和应用参考。
This paper proposed a variable cross-section bending acoustic metamaterial with embedded porous materials for controlling broadband noise at medium and low frequencies. Firstly, a theoretical model of the sound absorption coefficient for variable cross-section bending metamaterial unit was established by impedance transfer method and Johnson Champoux Allard (JCA) model. A variable cross-section bending metamaterial unit was designed to achieve quasi-perfect sound absorption of 0.98 at 736 Hz and efficient sound absorption (sound absorption coefficient > 0.8)with a bandwidth of up to 392 Hz, with a thickness of only 48mm. Subsequently, the broadband efficient sound absorption mechanism was analyzed using finite element method, and the accuracy of the theoretical model was verified. To achieve the design of noise reduction structures for medium and low frequency ultra-wideband, based on the critical coupling theory, a parallel coupling method was adopted to achieve an efficient sound absorption composite structure with a sound absorption coefficient above 0.8 in the frequency range of 424~1500 Hz. The finite element simulation and experimental results have verified the sound absorption effect of the parallel variable cross-section bending sound absorbing composite metamaterial. The proposed variable cross-section bending metamaterial composite structure has the characteristics of good sound absorption performance, wide sound absorption bandwidth, and simple structural manufacturing, which can provide a theoretical basis and application reference for medium and low frequency broadband noise control technology.
2025,47(6): 35-40 收稿日期:2024-5-14
DOI:10.3404/j.issn.1672-7649.2025.06.006
分类号:U661.44
作者简介:肖英龙(1988 – ),男,高级工程师,研究方向为船舶振动噪声控制
参考文献:
[1] ALLARD J F, DAIGLE G. Propagation of sound in porous media: modeling sound absorbing materials[J]. The Journal of the Acoustical Society of America, 1994, 95(5): 2785.
[2] 吴九汇, 马富银, 张思文, 等. 声学超材料在低频减振降噪中的应用评述[J]. 机械工程学报, 2016, 13: 68-78.
[3] YANG M, LI Y, MENG C, et al. Sound absorption by subwavelength membrane structures: A geometric perspective[J]. Comptes Rendus Mécanique, 2015, 343: 635-644.
[4] 杨坤, 汤旸, 吴恒亮, 等. 薄膜型局域共振声子晶体低频隔声特性研究[J]. 舰船科学技术, 2022, 044(21): 25-29.
YANG K,TANG Y,WU H L,et al. Study on low frequency sound insulation cheracteristics of thin film type local resonant phononic crystals[J]. Ship Science and Technology, 2022, 044(21): 25-29.
[5] DUAN M, YU C, XU Z, et al. Acoustic impedance regulation of Helmholtz resonators for perfect sound absorption via roughened embedded necks[J]. Applied Physics Letters, 2020, 117(15): 151904.
[6] WU Y, LIANG Q, HE J, et al. Deep-subwavelength broadband sound absorbing metasurface based on the update finger coiling-up method[J]. Applied Acoustics, 2022, 195: 108846.
[7] LI Y, LIANG B, TAO X, et al. Acoustic focusing by coiling up space[J]. Applied Physics Letters, 2012, 101(23): 233508.
[8] PRASETIYO I, SIHAR I, BRAHMANA F, et al. Enhancing nonwoven fabric material sound absorption using embedded labyrinthine rigid structures[J]. Applied Acoustics, 2022, 195: 108852.
[9] REN S, LIU Y, SUN W, et al. Broadband low-frequency sound absorbing metastructures composed of impedance matching coiled-up cavity and porous materials[J]. Applied Acoustics, 2022, 200: 109061.
[10] LI Y, YAN J, PENG Y. Multiscale porous with coiled-up channel for low-frequency broadband sound absorption[J]. International Journal of Mechanical Sciences, 2022, 232: 107622.
[11] LIU X, YU C, XIN F. Gradually perforated porous materials backed with Helmholtz resonant cavity for broadband low-frequency sound absorption[J]. Composite Structures, 2021, 263(1): 113647.
[12] LI Y, LIN Y, YAO S, et al. Low-frequency broadband sound absorption of the metastructure with extended tube resonators and porous materials[J]. Applied Acoustics, 2023, 217: 109827.