无人艇在执行任务时,往往会面临任务目标位置的变化,且受海流空间分布和时间变化的影响,其航行路径常具有不确定性和复杂性。因此,研究无人艇在海流环境中如何实时获取目标信息并灵活调整航行路径显得至关重要。本研究针对无人艇在海流环境下对动态目标点的路径规划问题,提出一种基于海流和动态目标的势场法。该算法优化了人工势场法的斥力函数,通过引入无人艇与目标点的相对距离解决目标点不可达问题。同时,考虑海流对无人艇航行的影响,构建了海流势场函数。通过添加虚拟斥力点和引入安全距离阈值,以减小偏航和碰撞风险。研究结果表明,本文提出的算法在海流环境下能够有效规划出一条无碰路径,实现对动态目标的追踪。
When undertaking a mission, an unmanned surface vehicle (USV) frequently encounters changes in the position of the mission target and is affected by the spatial distribution and temporal change of ocean currents. Consequently, it is crucial to investigate methods of acquiring target information in real-time and to adapt the navigation path in response to the dynamic ocean current environment. This paper addresses the problem of path planning for dynamic target points in an ocean current environment. A new method, the Dynamic Target Current-Integrated Potential Field, is proposed. This method optimizes the repulsion function of the artificial potential field method. It solves the problem of unreachable target points by introducing the relative distance between the unmanned surface vehicle and the target point. Concurrently, the impact of the current on the navigation of unmanned surface vehicles is taken into account, with the construction of a current potential field function. The risk of yaw and collision is reduced by the addition of virtual repulsion points and the introduction of safety distance thresholds. The results demonstrate that the proposed method is capable of effectively planning a non-contact path to track dynamic targets.
2025,47(6): 69-75 收稿日期:2024-6-3
DOI:10.3404/j.issn.1672-7649.2025.06.011
分类号:U675.5
基金项目:福建省自然科学基金项目(2023J01326);集美大学国家基金培育计划项目(ZP2023004)
作者简介:魏凯(2000 – ),男,硕士,研究方向为交通信息工程及控制、路径规划
参考文献:
[1] 陈卓, 金建海, 张波, 等. 水面无人艇自主导航与控制系统的设计与实现[J]. 中国造船, 2020, 61(S1): 89-96.
CHEN Z, JIN J B, ZHANG B, et al. Design and implementation of autonomous navigation and control system for surface unmanned vessel[J]. Shipbuilding of China, 2020, 61(S1): 89-96.
[2] 董蛟, 刘忠, 张建强, 等. 欠驱动USV实时自主避障路径规划算法[J]. 电光与控制, 2020, 27(5): 10-15.
DONG J, LIU Z, ZHANG J Q, et al. Real-time autonomous obstacle avoidance path planning algorithm for underdriven USV[J]. Electronics Optics and Control, 2020, 27(5): 10-15.
[3] 董璐, 熊爱玲. 基于改进RRT~*-Smart的复杂动态环境下的无人艇路径规划[J]. 智能科学与技术学报, 2022, 4(2): 264-276.
DONG L, XIONG A L. Unmanned boat path planning in a complex dynamic environment based on improved RRT~*-Smart[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 264-276.
[4] 容煜, 何正伟, 王森杰. 一种动态环境下无人艇局部路径规划方法[J]. 武汉理工大学学报(交通科学与工程版), 2023, 47(2): 275-280.
RONG Y, HE Z W, WANG S J. A local path planning method for unmanned boats in dynamic environment[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2023, 47(2): 275-280.
[5] SUN X, WANG G, FAN Y, et al. Simulation on local obstacle avoidance algorithm for unmanned surface vehicle[J]. International Journal of Simulation Modelling, 2016, 15(3): 460-472.
[6] 梁宵, 王宏伦, 曹梦磊, 等. 无人机复杂环境中跟踪运动目标的实时航路规划[J]. 北京航空航天大学学报, 2012, 38(9): 1129-1133.
[7] 吴剑, 张东豪. 基于卡尔曼滤波和D~*算法的动态目标航路规划[J]. 电光与控制, 2014, 21(8): 50-53.
[8] 高博, 徐德民, 张福斌. 动态目标的Field D~*算法及路径的提取计算[J]. 火力与指挥控制, 2010, 35(8): 98-102.
[9] 谢新连, 王余宽, 何傲, 等. 考虑风浪流影响的船舶路径规划及算法[J]. 重庆交通大学学报(自然科学版), 2022, 41(7): 1-8.
XIE X L, WANG Y K, HE A, et al. Ship path planning and algorithm considering the influence of wind and wave currents[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(7): 1-8.
[10] HEESU KIM, SANG-HYUN KIM, MARO JEON, et al. A study on path optimization method of an unmanned surface vehicle under environmental loads using genetic algorithm[J]. Ocean Engineering, 2017, 142: 616-624.
[11] 邹梅魁, 于飞, 吕重阳, 等. 采用量子粒子群算法的潜器路径规划[J]. 智能系统学报, 2013, 8(3): 220-225.
[12] ZENG Z, SAMMUT K, LIAN L, et al. A comparison of optimization techniques for AUV path planning in environments with ocean currents[J]. Robotics and Autonomous Systems, 2016, 8(2): 61-72.
[13] GU S D, ZHOU C H, WEN Y Q, et al. Motion planning for an unmanned surface vehicle with wind and current effects[J]. Journal of Marine Science and Eenineering, 2022, 10: 420-423.
[14] YOGANG , SANJAY , ROBERT , et al. A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents[J]. Ocean Engineering, 2018, 169: 1-34.
[15] YANG C, PAN J, WEI K, et al. A novel unmanned surface vehicle path-Planning algorithm based on A* and artificial potential field in ocean currents[J]. Journal of Marine Science and Engineering, 2024, 12(2): 285.
[16] KOREN Y, BORENSTEIN J. Potential field methods and their inherent limitations for mobile robot navigation[C]//Proceedings of IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 1991.
[17] GESS, CUI Y. New potential functions for mobile robot path planning [J]. IEEE Trans. Robotics and Automation, 2020, 16(5): 615-620.
[18] 徐海伟. 海洋探测机器人系统设计与路径规划研究[D]. 青岛: 中国海洋大学, 2009.
[19] 韩占忠, 王国玉. 工程流体力学基础[M]. 北京: 北京理工大学出版社, 2020: 35-82
[20] 刘同木, 张炜, 曹永港, 等. 基于受力分析的落水人员漂移轨迹预测研究[J]. 海洋预报, 2017, 34(1): 66-71.
LIU T M, ZHANG W, CAO Y G, et al. A study on the prediction of drift trajectory of a person falling into water based on force analysis[J]. Marine Forecasts, 2017, 34(1): 66-71.
[21] 夏山宏, 徐纯洁, 罗修波, 等. 海上落水人员漂移轨迹可视化预测研究[J]. 航海, 2022(4): 38-41.
XIA S H, XU C J, LUO X B, et al. Research on visualization and prediction of drift trajectory of a person overboard at sea[J]. Navigation, 2022(4): 38-41.