随着我国海洋强国战略的推进,无人航行器也在不断更新换代,对海洋资源开发的影响日益重要。面对多数水况复杂的水域,单一的水下航行器可能会出现损坏或无法完成探测任务的情况,本文从总体布局与结构设计方面出发,设计了一款跨介质水空两栖无人航行器,能够通过折叠变体机构自主适应不同介质环境。最后通过STAR-CCM+软件对航行器的水动、气动特性进行数值模拟。结果表明,航行器满足空中、水下不同的升阻力要求,可以在不同介质环境下保持最优性能。
With the advancement of China's marine power strategy, unmanned aerial vehicles are also constantly being updated and their impact on the development of marine resources is becoming increasingly important. In the face of complex water conditions in most water bodies, a single underwater vehicle may be damaged or unable to complete detection tasks. Starting from the overall layout and structural design, this project has designed a water air amphibious unmanned vehicle, which can autonomously adapt to different media environments through a folding variant mechanism. Finally, the hydrodynamic and aerodynamic characteristics of the vehicle are numerically simulated using STARCCM+software. The results show that the vehicle meets different lift and drag requirements in air and underwater, and can maintain optimal performance in different media environments.
2025,47(6): 82-87 收稿日期:2024-5-22
DOI:10.3404/j.issn.1672-7649.2025.06.013
分类号:U674.941;V279
基金项目:江苏海洋大学研究生科研与实践创新计划项目(KYCX2023-64)
作者简介:李汶烨(1999 – ),男,硕士研究生,研究方向为水动力学、跨介质水空无人航行器
参考文献:
[1] 李增辉. 手抛式固定翼无人机设计与飞行控制[D]. 长沙: 中南大学, 2024.
[2] ZENG Z, LYU C, BI Y, et al. Review of hybrid aerial underwater vehicle: cross-domain mobility and transitions[J]. Acta Aeronautica et Astronantica Sinica, 2024, 10(1): 31491.
[3] WEISLER W, STEWART W, ANDERSON M B, et al. Testing and characterization of a fixed wing cross-domain unmanned vehicle operating in aerial and underwater environments[J]. IEEE Journal of Ocean Engineering, 2017, 43(4): 969–982.
[4] 杨洋, 张宽地, 姚田成, 等. 基于NSGA-Ⅱ遗传算法的Myring流线型量水槽体型优化设计[J]. 农业机械学报, 2024, 55(4): 241-250.
[5] 王妹婷, 齐永锋, 汤方平, 等. 水下机器人外形优化设计[J]. 机床与液压, 2014, 42(5): 76-79.
WANG S T, QI Y F, TANG F P, et al. Shape optimal design of underwater robot[J]. Machine Tool & Hydraulics, 2014, 42(5): 76-79.
[6] 高超, 贾娅娅, 刘庆宽. 相对厚度对翼型气动特性的影响研究[J]. 工程力学, 2020, 37(S1): 380-386.
GAO C, JIA Y Y, LIU Q K. Effect of relative thickness on aerodynamic performance of airfoil[J]. Engineering Mechanics, 2020, 37(S1): 380-386.
[7] SANKARASUBRAMANIAN R, SRIDHAR A, PRASHANTH M S, et al. Influence of thickness on performance characteristics of non-sinusoidal plunging motion of symmetric airfoil[J]. Aerospace Science and Technology, 2018, 81: 333-347.
[8] 李宏源, 吕凯, 陈迎亮, 等. 新型仿生水-空跨介质航行器结构设计[J]. 水下无人系统学报, 2022, 30(6): 726-732.
LI H Y, LV K, CHEN Y L, et al. Structure design of a novel bionic water-air cross-domain vehicle[J]. Journal of Unmanned Undersea Systems, 2022, 30(6): 726-732.
[9] 贺永圣. 仿生跨介质飞行器水气动布局融合设计及出水特性分析[D]. 长春: 吉林大学, 2022.
[10] 鲍杨春. 跨介质航行器流体动力外形组合仿生设计与气动特性分析[D]. 长春: 吉林大学, 2019.
[11] 吕达, 苏浩秦, 李筠, 等. 变形仿生飞翼跨介质无人机外形设计与航行仿真[J]. 兵器装备工程学报, 2022, 43(12): 59-66.
[12] 王凯朋, 孟祥尧, 滕月慧, 等. 海空跨域航行器流体动力特性研究[J]. 舰船科学技术, 2021, 43(19): 46-50.
WANG K P, MENG X Y, TENG Y H, et al. Study of aerodynamic and hydrodynamic characteristics for aerial underwater vehicle[J]. Ship Science and Technology, 2021, 43(19): 46-50.
[13] 严卫生. 鱼雷航行力学 [M]. 西安: 西北工业大学出版社, 2005.
[14] ZAN L R, SUN H B, ZOU J, et al. Study on the effect of near-wall grid on numerical prediction of resistance for planing trimaran, Ocean Engineering, 2023, 115733, ISSN 0029-8018.