柴油机是船舶动力的核心装置,对其热力参数进行监测可以有效提高船舶航行安全性。提出一种基于多传感器感知的船舶柴油机热力参数监测系统,设计系统基本结构,对热力参数相关的传感器进行硬件选型,设计燃油温度和压力传感器基本结构,提出一种基于贝叶斯网络的多传感器数据融合方法,并采用加权平均法进行决策融合,在此基础上使用构建的监测系统对等多个压力和温度传感器数据进行实时监测,计算得到的决策融合结果能够有效排除异常传感器对热力参数监测结果的干扰。
Diesel engine is the core device of ship power, monitoring its thermal parameters can effectively improve the safety of ship navigation. A thermal parameter monitoring system of Marine diesel engine based on multi-sensor perception is proposed, the basic structure of the system is designed, the hardware selection of sensors related to thermal parameters is carried out, the basic structure of fuel temperature and pressure sensors is designed, a multi-sensor data fusion method based on Bayesian network is proposed, and the weighted average method is adopted for decision fusion. On this basis, the constructed monitoring system is used to monitor the data of multiple pressure and temperature sensors in real time, and the calculated decision fusion results can effectively eliminate the interference of abnormal sensors on the monitoring results of thermal parameters.
2025,47(6): 106-109 收稿日期:2024-7-17
DOI:10.3404/j.issn.1672-7649.2025.06.017
分类号:U667.65
作者简介:邱亚兰(1984 – ),女,硕士,讲师,研究方向为机械工程及装备系统热力学
参考文献:
[1] ZHANG P, XU H Y, ZOU Y J. Bi-AAE: A binary adversarial autoencoder deep neural network model for anomaly detection in system - levels marine diesel engines[J]. 2024(1): 1–10.
[2] PALOMO Gu, JIMENEZ-ESPADAFOR, F. J. Torsional system dynamics of low speed diesel engines based on instantaneous torque: application to engine diagnosis[J]. Mech. Syst. Signal Process, 2019(116): 858–878.
[3] QU C, ZHOU Z, LIU Z, et al. Predictive anomaly detection for marine diesel engine based on echo state network and autoencoder[J]. Energy REP. 2022(8), 998–1003.
[4] 丁凯, 蒋超越, 陶铭, 等. 多源异构传感器数据融合和算力优化研究[J]. 物联网学报, 2024,8(4):23–33.
[5] 王海明, 贾玲, 黄琪训, 等. 基于深度混合卷积的变电站多传感器数据融合方法[J/OL]. 自动化技术与应用, 2024:1–5.
[6] 王宁, 张雪峰, 李洁龙, 等. 面向港口环境精细感知的无人船多传感器融合SLAM系统[J]. 船舶工程, 2024, 46(7): 81-89.
[7] 贾薇, 王宁, 张富宇, 等. 基于多传感器融合SLAM的无人船靠泊技术[J]. 大连海事大学学报, 2023, 49(4): 65-75.
[8] 夏德斌, 李亚东, 丁彬, 等. 基于支持向量机的多传感器船舶火灾探测技术[J]. 造船技术, 2020(6): 28-30.