进排气系统是发动机的重要组成部分,其设计的优劣程度直接决定了发动机的整体性能,为了更加深入地研究发动机进排气管道结构对发动机气缸主要性能均匀性的影响,对建立的发动机一维模型进行关于管道结构的仿真实验。结果表明,进气管长度变化会引起气缸最大压力、排气温度、平均有效压力(IMEP)和制动比油耗(BSFC)出现不均匀现象;当进气管径差值为6 mm时,各性能参数不均匀性达到最大;进气总管长度增加时,气缸最大压力和排气温度的不均匀度几乎保持不变,而BSFC不均匀度则有所增加;进气总管直径增加会引起气缸IMEP和BSFC出现不均匀现象。排气管长增加及管径增大时,气缸不均匀性整体上呈下降趋势;排气总管结构参数的变化对气缸工作不均匀性的影响较小。
The intake and exhaust systems are critical components of an engine, the quality of whose design directly determines the overall performance of the engine. To study more deeply the impact of the structural design of the intake and exhaust pipes on the uniformity of the main performance parameters of the engine cylinders, a series of simulation experiments concerning pipe structure were conducted on a one-dimensional engine model that was established for this purpose. The results showed that variations in the length of the intake pipe can lead to non-uniformity in the maximum cylinder pressure, exhaust temperature, Indicated Mean Effective Pressure (IMEP), and Brake Specific Fuel Consumption (BSFC). When the difference in intake pipe diameter is 6mm, the non-uniformity of each performance parameter reaches its peak. When the length of the intake manifold is increased, the degree of non-uniformity in the maximum cylinder pressure and exhaust temperature remains almost unchanged, whereas the non-uniformity in BSFC increases. An increase in the diameter of the intake manifold leads to non-uniformity in IMEP and BSFC. When the length and diameter of the exhaust pipe are increased, the overall non-uniformity of the cylinder decreases. Changes in the structural parameters of the exhaust manifold have a relatively small impact on the working non-uniformity of the cylinders.
2025,47(6): 110-115 收稿日期:2024-5-23
DOI:10.3404/j.issn.1672-7649.2025.06.018
分类号:TK432
基金项目:国家重点研发计划资助项目(2022YFB4301403) ;高技术船舶科研项目(CBG3N21-3-3)
作者简介:梁文威(1999 – ),男,硕士研究生,研究方向为轮机自动化与智能化
参考文献:
[1] 林辉. 船舶动力系统现状及发展趋势分析[J]. 内燃机与配件, 2020(22): 176–177.
LIN H, Analysis of the current situation and development trend of ship power system[J]. Internal Combustion Engine & Parts, 2020(22): 176–177.
[2] 欧顺华, 余永华, 胡闹, 等. 基于缸压的船用柴油机燃烧闭环控制策略研究[J]. 内燃机工程, 2020, 41(6): 29-35.
OU S H, YU Y H, HU N, et al. Research on closed-loop combustion control strategy of marine diesel engine base on pressure in cylinder[J]. Chinese Internal Combustion Engine Engineering, 2020, 41(6): 29-35.
[3] MAO X, WEI X, WANG J, et al. Start-of-injection-based software optimization for consistency between the cylinders in common-rail diesel engines[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016, 230(5): 709-720.
[4] CHEN Z, YAO C, WANG Q, et al. Study of cylinder-to-cylinder variation in a diesel engine fueled with diesel/methanol dual fuel[J]. Fuel, 2016, 170: 67-76.
[5] 张健健, 王孝丽, 刘臻, 等. 某16缸发动机排温不均匀性分析及优化[J]. 内燃机与动力装置, 2022, 39(2): 48-54.
ZHANG J J, WANG X L, LIU Z, et al. Analysis and optimization of a 16-cylinder engine with non-uniform exhaust temperature[J]. Internal Combustion Engine & Power Plant, 2022, 39(2): 48-54.
[6] 魏威, 曾丽丽, 吕锋, 等. 天然气发动机缸压不均匀问题的计算分析[J]. 柴油机设计与制造, 2022, 28(2): 25-30.
WEI W, ZENG L L, LV F, et al. Simulation and analysis on uneven cylinder pressure of natural gas engine[J]. Design and Manufacture of Diesel Engine, 2022, 28(2): 25-30.
[7] 刘胜, 苏立旺, 田永海. 天然气发动机进气不均匀性改善研究[J]. 车用发动机, 2019(5): 41-45.
LIU S, SU L W, TIAN Y H, et al. Research on improvement of intake unevenness of natural gas engine[J]. Vehicle Engine, 2019(5): 41-45.
[8] 唐元元, 张均东, 贾宝柱, 等. 气缸体对船舶柴油机模型精度的影响[J]. 哈尔滨工程大学学报, 2017, 38(12): 1836-1843.
TANG Y Y, ZHANG J D, JIA B Z, et al. The effect of cylinder body on the accuracy of marine diesel engine model[J]. Journal of Harbin Engineering University, 2017, 38(12): 1836-1843.