快速且准确地制定舰船避碰行动方案对保证舰船安全及作战能力具有重要意义。本文将智能算法应用到舰船避碰行动策略制定中,从环境适应性、复杂场景处理能力以及实时性等3个方面对遗传算法、粒子群优化算法以及神经网络算法进行比较,以避碰成功率、避碰时间、收敛速度为指标,对多种智能算法进行仿真分析,结果表明GA-PSO算法优于其他算法,提出了基于GA-PSO的舰船避碰行动策略。
It is of great significance to formulate the collision avoidance action plan quickly and accurately to ensure the safety and combat capability of the ship. The intelligent algorithm is applied to the formulation of ship collision avoidance action strategy, and the genetic algorithm, particle swarm optimization algorithm and neural network algorithm are compared from three aspects, including environmental adaptability, complex scene processing ability and real-time performance. The success rate of collision avoidance, collision avoidance time and convergence speed are taken as indicators to conduct simulation analysis on multiple intelligent algorithms. The results show that GA-PSO algorithm is superior to other algorithms. Finally, a collision avoidance strategy based on GA-PSO is proposed.
2025,47(6): 149-153 收稿日期:2024-9-18
DOI:10.3404/j.issn.1672-7649.2025.06.025
分类号:U675.79.
基金项目:山东省高等学校科技计划项目(J17KB153)
作者简介:苏娜(1980 – ),女,硕士,副教授,研究方向为计算机技术
参考文献:
[1] 祁新宇, 张智, 尚晓兵, 等. 基于多项式混沌展开的船舶避碰鲁棒轨迹规划[J]. 系统工程与电子技术, 2024(9): 1-15.
QI X Y, ZHANG Z, SHANG X B, et al. Robust trajectory planning for ship collision avoidance based on polynomial chaos expansion[J]. Systems Engineering and Electronics, 2024(9): 1-15.
[2] 李世友. 基于遗传算法的船舶避碰系统[J]. 中国水运, 2021(12): 45-48.
LI S Y. Ship collision avoidance system based on genetic algorithm[J]. China Water Transport, 2021(12): 45-48.
[3] 周凤杰. 船舶避碰的粒子群-遗传(PSO-GA)的混合优化算法研究[J]. 船舶力学, 2021, 25(7): 909-916.
ZHOU F J. Research on the hybrid optimization algorithm of particle swarm optimization - genetic algorithm (pso-ga) for ship collision avoidance[J]. Journal of Ship Mechanics, 2021, 25(7): 909-916.
[4] 倪生科, 刘正江, 蔡垚, 等. 基于混合遗传算法的船舶避碰路径规划[J]. 上海海事大学学报, 2019, 40(1): 21-26.
NI S K, LIU Z J, CAI Y, et al. Path planning for ship collision avoidance based on hybrid genetic algorithm[J]. Journal of Shanghai Maritime University, 2019, 40(1): 21-26.
[5] 赵明丽. 船舶避碰路径模糊控制系统[J]. 舰船科学技术, 2022, 44(14): 69-72.
ZHAO M L. Fuzzy control system for ship collision avoidance path[J]. Ship Science and Technology, 2022, 44(14): 69-72.
[6] 车琪, 徐海祥, 冯辉, 等. 考虑会遇态势辨识不确定性的多船避碰方法[J]. 武汉理工大学学报(交通科学与工程版), 2024(4): 1-10.
CHE Q, XU H X, FENG H, et al. Multi-ship collision avoidance method considering the uncertainty of encounter situation identification[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering Edition), 2024(4): 1-10.
[7] 胡宴才, 张强, 吴恒涛. 大风浪条件下考虑避碰脆弱性的多船避碰决策[J]. 山东交通学院学报, 2023, 31(1): 93-101.
HU Y C, ZHANG Q, WU H T. Multi-ship collision avoidance decision-making considering collision avoidance vulnerability under severe wind and wave conditions[J]. Journal of Shandong Jiaotong University, 2023, 31(1): 93-101.
[8] 刘冬冬, 史国友, 李伟峰, 等. 基于最短避碰距离和碰撞危险度的避碰决策支持[J]. 上海海事大学学报, 2018, 39(1): 13-18.
LIU D D, SHI G Y, LI W F, et al. Collision avoidance decision support based on the shortest collision avoidance distance and collision risk degree[J]. Journal of Shanghai Maritime University, 2018, 39(1): 13-18.