船载主动式升沉补偿系统存在时滞性、非线性、强干扰、不确定性等问题,极大程度影响了系统的稳定性能。将自抗扰控制技术(ADRC)运用于船载主动升沉补偿系统的控制算法设计中,对系统和自抗扰控制算法进行数学建模,并将自抗扰控制与经典PID 控制的效果进行对比,验证了自抗扰控制算法良好的动态响应性能与抗干扰能力。在6级海况风浪流全耦合环境载荷与多种海况环境载荷进行仿真分析,补偿精度高达98%,验证了基于自抗扰控制的船载主动升沉补偿系统的高适应性。开展基于自抗扰控制的升沉补偿系统模型试验,整体补偿效率达到84%以上,验证了系统具有较好的实际应用性能,在该领域工程的推广应用方面具有重要的参考价值和指导意义。
The shipborne active heave compensation system faces challenges such as time delay, nonlinearity, strong disturbances, and uncertainties, which significantly impact the system's stability and performance. Apply the Active Disturbance Rejection Control (ADRC) to the control algorithm design of shipborne active heave compensation systems. Mathematical modeling of both the system and the ADRC algorithm is established, and a comparative analysis of ADRC versus classical PID control is conducted to validate the robust disturbance rejection capabilities and dynamic response performance of the ADRC algorithm. Through simulation analyses conducted in a fully coupled environment that includes sea states at level 6 with wind, waves, and currents, as well as various other sea conditions, the compensation accuracy reaches up to 98%, verifying the high adaptability of the active heave compensation system based on ADRC. Furthermore, model experiments on the heave compensation system based on ADRC demonstrate an overall compensation efficiency of over 84%, confirming the system's strong practical performance. This research holds significant reference value and guiding significance for the widespread application of engineering in this field.
2025,47(7): 27-32 收稿日期:2024-5-24
DOI:10.3404/j.issn.1672-7649.2025.07.006
分类号:U674.95
基金项目:国家重点研发计划项目(2022YFE010700);国家自然科学基金面上项目(52171259);工信部高技术船舶科研项目(工信部重装函[2021]342号)
作者简介:周卫鹏(1979-),男,硕士,讲师,研究方向为船舶与海洋工程先进制造技术
参考文献:
[1] 周利, 段玉响, 任政儒, 等. 主动式升沉补偿控制系统及运动预报[J]. 华中科技大学学报(自然科学版), 2021, 49(3): 98-104.
[2] 段玉响, 任政儒, 周利. 主动式升沉补偿技术研究现状和发展趋势[J]. 舰船科学技术, 2020, 42(21): 76-82.
DUAN Y X, REN Z R, ZHOU L, Research status and development trend of active heave compensation technology [J]. Ship Science and Technology, 2020, 42 (21): 76-82.
[3] 刘贤胜. 船用起重机主动升沉补偿控制系统研究 [D].哈尔滨: 哈尔滨工程大学, 2016.
[4] 韩京清. 控制理论——模型论还是控制论[J]. 系统科学与数学, 1989(4): 328-335.
[5] 赵顺利. RBF神经网络优化自抗扰在船舶航迹控制中的应用[D]. 大连: 大连海事大学, 2020.
[6] 张淑艳, 谢园. 自抗扰技术在船舶动力系统控制中的应用[J]. 舰船科学技术, 2020, 42(6): 106-108.
ZHANG S Y, XIE Y. Application of auto disturbance rejection technology in ship power system control[J]. Ship Science and Technology, 2020, 42(6): 106-108.
[7] 刘鹏, 周利, 刘仁伟, 等. 用于船舶主动式升沉补偿的自抗扰控制方法[J]. 舰船科学技术, 2022, 44(22): 83-88.
LIU P, ZHOU L, LIU R W, et al. Research on ADRC applied to active heave compensation control system for ship[J]. Ship Science and Technology, 2022, 44(22): 83-88.
[8] 江桂云, 王勇勤, 严兴春. 液压伺服阀控缸动态特性数学建模及仿真分析[J]. 工程科学与技术, 2008, 40(5): 195-198.
[9] 廖薇, 赵延明, 刘德顺, 等. 电驱动海洋绞车主动升沉补偿自抗扰控制系统[J]. 中国机械工程, 2018, 29(24): 2999-3008.
[10] 韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.
[11] 楼梦瑶. 基于运动预测的ROV主动升沉补偿控制系统研究[D]. 上海: 上海交通大学, 2020.
[12] 韩京清. 从PID技术到“自抗扰控制”技术[J]. 控制工程, 2002(3): 13-18.
[13] PEREZ T, SMOGELI O, FOSSEN T, et al. An overview of the marine systems simulator (MSS): A simulink toolbox for marine control systems[J]. Modeling, identification and Control, 2006, 27(4): 259-275.