为实现船舶加筋板结构的直接优化设计,需对其抗屈曲性能进行计算分析,依据典型船舶加筋板结构抗屈曲能力的特征提出有效的直接优化方法。针对加筋板屈曲应力的数值计算,提出适用的三跨板架模型,通过与理论及解析结果的比较,验证数值方法的精确性并证明扭转屈曲应力是加筋板结构抗屈曲能力的临界值。通过参数化定义加筋板的物理模型和优化模型,采用常规的优化算法对加筋板的板厚、加强筋尺寸及间距等设计变量进行寻优求解,提出并验证了2种优化方法,第一种方法可以对加筋板的抗屈曲能力进行综合优化,得到任意约束条件下的优化结果,第二种方法适于在同等重量约束下的局部寻优。优化结果的极限强度计算表明2种方法分别能使加筋板的极限承载能力提高7.5%和9.6%。
Proposes an effective direct optimization method based on the characteristics of buckling resistance of typical ship stiffened panels,needs to calculate and analyze its anti buckling performance.For the numerical method of calculating torsional buckling resistance of ship stiffened panels, suggests applicative three spans computation model, compares the numerical results to the results of theoretical and analytic method, proves the accuracy of numerical method, and proves the torsional buckling resistance is the critical value of buckling resistance of ship stiffened panels. Defines the physical model and mathematical model of stiffened panels through parameterization, carries out optimization of the plate thickness, dimensions and spacing of stiffeners by normal optimization algorithm, puts forward and proves two optimization methods, the first method realizes compromise optimization of the overall resistances of ship stiffened panels , the second method can improve the torsional buckling resistances significantly with the same weight. The ultimate strength evaluation of the optimization results shows that all the methods Increase the ultimate bearing capacity of the stiffened panels by 7.5% to 9.6%.
2025,47(7): 43-48 收稿日期:2024-6-25
DOI:10.3404/j.issn.1672-7649.2025.07.009
分类号:U663
作者简介:魏刚(1983-),男,硕士,高级工程师,研究方向为船舶与海洋工程结构设计与制造
参考文献:
[1] 陈金睿, 陈普会, 孔斌, 等. 考虑筋条扭转弹性支持的轴压复合材料加筋板局部屈曲分析方法[J]. 南京航空航天大学学报, 2017, 49(1): 76-82.
CHEN J R, CHEN P H, KONG B, et al. Local buckling analysis of axially compressed stiffened laminated panels considering rotational restraint of stiffeners[J]. Journal of Nanjing University of Aeronautics, 2017, 49(1): 76-82.
[2] 袁坚锋. 基于显式有限元的复合材料加筋板后屈曲分析方法研究[J]. 机械设计与制造工程, 2021, 50(4): 73-76.
YUAN J F. Resarch on post buckling analysis method of composite reinforced plates based on explicit finite element method[J]. Machine Design and Manufacturing Engineering, 2021, 50(4): 73-76.
[3] 宋刚, 崔德刚, 董立君. 复合材料加筋板屈曲/后屈曲分析的应用[J]. 复合材料学报, 2017(1): 96-103.
SONG G, CUI D G, DONG L J. Applicationg of buckling/post-buckling analysis for composite stiffened panels[J]. Acta Materiae Compositae Sinica, 2017(1): 96-103.
[4] 刘宸宇, 骆煊赫, 刘康翔, 等. 基于平铺刚度法的弧形加筋板的轻量化设计[J]. 应用数学和力学, 2023, 44(8): 953-964.
LIU C Y, LUO X H, LIU K X, et al. Lightweight design of arc rib stiffened plates based on the smeared stiffener method[J]. Applied Mathematics and Mechanics, 2023, 44(8): 953-964.
[5] 乔迟, 张世联. 大跨度加筋板架优化设计研究[J]. 舰船科学技术, 2015(8): 23-26.
QIAO C, ZHANG S L. Optimiazation design of large-span stiffened panel[J]. Ship Science and Technology, 2015(8): 23-26.
[6] 黄陈哲, 向阳, 黄进安. 船舶加筋板轻量化设计研究[J]. 舰船科学技术, 2021, 43(2) : 13-19.
HUANG C Z, XIANG Y, HUANG J A. Research on lightweight design of ship stiffened plate[J]. Ship Science and Technology, 2021, 43(2) : 13-19.
[7] 唐其琴, 李伯阳. 基于理想点法的加筋板屈曲承载力优化[J]. 装备环境工程, 2019, 16(2): 37-41.
TANG Q Q, LI B Y. Buckling capacity optimization of stiffened panels based on ideal point method[J]. Equipment Environmental Engineering, 2019, 16(2): 37-41.
[8] 邓文亮, 成竹, 吴敬涛, 等. 约束方式对温度环境下复材/金属混合结构壁板稳定性的影响[J]. 应用力学学报, 2020, 37(4): 1798-1804.
DENG W L, CHENG Z, WU J T, et al. Effect of constraint method on stability of hybrid composite metal structural walls in temperature environment[J]. Chinese Journal of Applied Mechanics, 2020, 37(4): 1798-1804.
[9] Lloyd’s Register. Rules and regulations for the classification of naval ships [S]. Lloyd’s Register, 2019.
[10] Det Norske Veritas. Recommended Practice DNV–RP-C201 [S]. Det norske veritas, 2017.
[11] 陈彦廷, 于昌利, 桂洪斌. 船体板和加筋板的屈曲及极限强度研究综述[J]. 中国舰船研究, 2017, 12(1): 54-62.
CHEN Y T, YU C L, GUI H B. Research development of buckling and ultimate strength of hull plate and stiffened panel[J], Chinese Journal of Ship Research, 2017, 12(1): 54-62.
[12] Det Norske Veritas. Recommended Practice DNV–RP-C208 [S]. Det Norske Veritas, 2016.