随着世界各国对船舶排放污染问题越来越重视,混合动力船舶开始发展推广并逐步应用,其可有效降低燃料消耗,减少污染气体排放。现有的混合动力船舶研究大多集中在船舶能量管理方面,混合动力系统容量配置优化同样是提高混合动力船舶节能减排性能的重要研究方向。本文首先归纳船舶混合动力系统的建模方法和结构配置类型;然后综述了容量配置研究进展及其研究方法,总结与分析了相关研究方法的优缺点;最后为进一步提高混合动力系统节能减排性能,以应对存在的问题与挑战,从动力系统结构改善、工况识别、工况预测、动力系统谱系化4个方面对未来船舶混合动力系统容量配置研究进行了展望。
With the increasing attention to ship emission pollution issues worldwide, hybrid power ships are beginning to develop, promote, and gradually apply. They can effectively reduce fuel consumption and decrease pollutant gas emissions. Existing research on hybrid power ships mostly focuses on ship energy management. The optimization of hybrid power system capacity configuration is also an important research direction for improving the energy-saving and emission reduction performance of hybrid power ships. This paper first summarized the modeling methods and structural configuration types of ship hybrid power systems. Then, it reviewed the progress of capacity configuration research and its methods, summarizing and analyzing the advantages and disadvantages of related research methods. Finally, to further improve the energy-saving and emission reduction performance of hybrid power systems and address existing problems and challenges, this paper provided prospects for future research on the capacity configuration of hybrid power systems from four aspects: power system structure improvement, condition recognition, condition prediction, and power system pedigree.
2025,47(8): 1-7 收稿日期:2024-7-3
DOI:10.3404/j.issn.1672-7649.2025.08.001
分类号:U664.1
基金项目:国家自然科学基金区域创新发展联合基金资助项目(U23A20680);江苏省碳达峰碳中和科技创新专项资金(产业前瞻与关键核心技术攻关)重点项目(BE2023091-2);2023年韶关市省科技创新战略专项(230317166277914)
作者简介:张洪伟(2000-),男,硕士研究生,研究方向为新能源船舶动力系统优化及能量管理
参考文献:
[1] Marine Environment Protection Committee. Report of the marine environment protection committee on its sixty-second session [R]. London: Marine Environment Protection Comm-ittee, 2018.
[2] Marine Environment Protection Committee. Prevention of air pollution from ships (Fourth IMO GHG Study 2020-Final report)[R]. London: Marine Environment Protection Commit-tee, 2020.
[3] ZHU J, CHEN L, WANG X, et al. Bi-level optimal sizing and energy management of hybrid electric propulsion systems[J]. Applied Energy, 2020, 260: 114134.
[4] HOU J, SONG Z, HOFMANN H, et al. Adaptive model predictive control for hybrid energy storage energy management in all-electric ship microgrids[J]. Energy Conversion and Management, 2019, 198: 111929.
[5] FOTOUHI A, AUGER D J, PROPP K, et al. A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 1008-1021.
[6] NASERI F, KARIMI S, FARJAH E, et al. Supercapacitor management system: A comprehensive review of modeling, estimation, balancing, and protection techniques[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111913.
[7] 王建华, 顾彬仕, 段青, 等. 单相 DC/AC 逆变器大信号快速建模仿真方法[J]. 电力系统自动化, 2017, 41(3): 110-116.
WANG J H, GU B S, DUAN Q, et al. Large signal fast modeling and simulation method for single phase DC/AC inverters[J]. Automation of Electric Power Systems, 2017, 41(3): 110-116.
[8] BAGHERABADI K M, SKJONG S, PEDERSEN E. Dynamic modelling of PEM fuel cell system for simulation and sizing of marine power systems[J]. International Journal of Hydrogen Energy, 2022, 47(40): 17699-17712.
[9] 张泽辉. 混合动力船舶复合电源能量管理策略及容量配置研究[D]. 武汉: 武汉理工大学, 2019.
[10] SALAMEH Z M, CASACCA M A, LYNCH W A. A mathematical model for lead-acid batteries[J]. IEEE Transactions on Energy Conversion, 1992, 7(1): 93-98.
[11] BERRUETA A, URSÚA A, SAN Martin I, et al. Supercapacitors: electrical characteristics, modeling, applications, and future trends[J]. IEEE Access, 2019(7): 50869-50896.
[12] ZHANG L, HU X, WANG Z, et al. A review of supercapacitor modeling, estimation, and applications: A control/management perspective[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1868-1878.
[13] 卢晓平, 魏光普, 张文毓. 太阳能动力船舶发展综述[J]. 海军工程大学学报, 2008(4): 45-50+61.
LU X P, WEI G P, ZHANG W Y. Summarization of solar energy ships[J]. Journal of Naval University of Engineering, 2008(4): 45-50+61.
[14] 俞万能, 廖卫强, 杨荣峰, 等. 基于太阳能锂电池及柴油发电机组的多能源(光柴储)船舶微网能量控制系统研发[J]. 中国造船, 2017, 58(1): 170-176.
YU W N, LIAO W Q, YANG R F, et al. Development of multi-energy control system for marine micro-grid based on photovoltaic-diesel generator-battery[J]. Shipbuilding of China, 2017, 58(1): 170-176.
[15] 崔岩, 蔡炳煌, 李大勇, 等. 太阳能光伏模板仿真模型的研究[J]. 系统仿真学报, 2006(4): 829-831+834.
CUI Y, CAI B H, LI D Y, et al. Study on simulation model of PV module[J]. Journal of System Simulation, 2006(4): 829-831+834.
[16] LI S, LI J, HE H, et al. Lithium-ion battery modeling based on Big Data[J]. Energy Procedia, 2019, 159: 168-173.
[17] LIN X F, HU M P, YYANG Y M. Modeling of supercapacitor based on RBF-ELM neural network[J]. Chinese Journal of Power Sources, 2015, 39(3): 546-549.
[18] FANG S, XU Y, WEN S, et al. Data-driven robust coordination of generation and demand-side in photovoltaic integrated all-electric ship microgrids[J]. IEEE Transactions on Power Systems, 2019, 35(3): 1783-1795.
[19] BALSAMO F, LAURIA D, MOTTOLA F. Design and control of coupled inductor DC–DC converters for MVDC ship power systems[J]. Energies, 2019, 12(4): 751.
[20] GEERTSMA R D, NEGENBORN R R, VISSER K, et al. Design and control of hybrid power and propulsion systems for smart ships: A review of developments[J]. Applied Energy, 2017, 194: 30-54.
[21] YUAN Y, WANG J, YAN X, et al. A review of multi-energy hybrid power system for ships[J]. Renewable and Sustainable Energy Reviews, 2020, 132: 110081.
[22] NGUYEN H P, HOANG A T, NIZETIC S, et al. The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review[J]. International Transactions on electrical energy systems, 2021, 31(11): e12580.
[23] RAZMJOO A, KAIGUTHA L G, RAD M A V, et al. A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area[J]. Renewable Energy, 2021, 164: 46-57.
[24] MASHAYEKH S, WANG Z, QI L, et al. Optimum sizing of energy storage for an electric ferry ship[C]//2012 IEEE Power and Energy Society General Meeting, IEEE, 2012.
[25] ZHU J, CHEN L, WANG B, et al. Optimal design of a hybrid electric propulsive system for an anchor handling tug supply vessel[J]. Applied energy, 2018, 226: 423-436.
[26] 张泽辉, 高海波, 管聪, 等. 典型工况下的燃料电池船舶复合储能系统设计[J]. 船舶工程, 2018, 40(8): 100-105.
ZHANG Z H, GAO H B, GUAN C, et al. Design of hybrid energy storage system for fuel cell ship based on typical load profile[J]. Ship Engineering, 2018, 40(8): 100-105.
[27] CHEN H, ZHANG Z, GUAN C, et al. Optimization of sizing and frequency control in battery/supercapacitor hybrid energy storage system for fuel cell ship[J]. Energy, 2020, 197: 117285.
[28] PIVETTA D, DALL'ARMI C, TACCANI R. Multi-objective optimization of hybrid PEMFC/Li-ion battery propulsion systems for small and medium size ferries[J]. International Journal of Hydrogen Energy, 2021, 46(72): 35949-35960.
[29] 杜文龙, 郭凤祥, 陈俐. 破冰船柴电混合动力系统优化设计及敏感性分析[J]. 中国舰船研究, 2021, 16(5): 10, 127-136.
DU W L, GUO F X, CHEN L. Optimization design and sensitivity analysis of diesel/battery hybrid propulsion system for polar icebreaker[J]. Chinese Journal of Ship Research, 2021, 16(5): 10, 127-136.
[30] SI Y, WANG R, ZHANG S, et al. Configuration optimization and energy management of hybrid energy system for marine using quantum computing[J]. Energy, 2022, 253: 124131.