针对某大尺度分段船舶模型,进行低频模态试验方法研究。在船模干模态试验中,通过试验分析悬挂刚度、悬挂位置等对模态试验结果的影响,并进行船模垂向弯曲干模态的测试和计算比较。试验研究表明,大尺度船模悬挂点的位置与低频干模态测量的准确性有关,为减少悬挂对低频模态结果的影响,应将弹性绳悬挂在振动模态节点位置。该试验模态与有限元计算模态结果比较后确认真实有效,该试验方法能大大提高低频模态的测试精度。
A low-frequency modal test method was studied for a large-scale segmented ship model. The influence of suspension stiffness, suspension position, etc. on the modal test results was experimentally compared in the ship model dry modal test. And conducted tests and computational comparisons on the vertical bending dry mode of the ship model. Experimental studies have shown that the position of suspension points for large-scale ship models is related to the accuracy of low-frequency dry mode measurements. To reduce the impact of suspension on low-frequency mode results, elastic ropes should be suspended at the vibration mode node position. After comparing the experimental mode with the finite element calculation mode results, it was confirmed to be true and effective. This experimental method can greatly improve the testing accuracy of low-frequency mode.
2025,47(8): 8-12 收稿日期:2024-3-16
DOI:10.3404/j.issn.1672-7649.2025.08.002
分类号:O329;TB535+.1
基金项目:高技术船舶科研项目(工信部联装函[2016]25号)
作者简介:周庆云(1962-),女,研究员,研究方向为振动噪声测试技术
参考文献:
[1] 司海龙, 顾学康, 胡嘉骏. 超大型船舶砰击颤振与波激振动研究进展[J]. 船舶力学, 2022, 26(11): 1723–1735.
SI H L, GU X K, HU J J. Overview of experimental and numerical investigations of whipping and springing for ultra-large ships[J]. Journal of Ship Mechanics. 2022, 26(11): 1723–1735.
[2] 王一雯, 吴卫国, 郑成. 宽扁肥大船型波激振动响应研究[J]. 振动与冲击, 2020, 39(18): 174-180.
WANG Y W, WU W G, ZHENG C. The springing investigation of the wide flat ship type[J]. Journal of Vibration and shock, 2020, 39(18): 174-180.
[3] MARON A, KAPSENBERG G. Design of a ship model for hydro-elastic experiments in waves[J]. International Journal of Naval Architecture and Ocean Engineering, 2014(6): 1130-1147.
[4] YOOIL K, IN-GYU A, SUNG-GUN P, On the modal parameter estimation of a segmented ship model with a hydroelastic response[C]// Proceedings of the Twenty-sixth (2016) International Ocean and Polar Engineering Conference, Rhodes, Greece, 2016.
[5] 陈占阳, 李志鹏. 不同浪向下超大型船舶载荷响应特征的模型试验研究[J]. 振动与冲击, 2017, 36(19): 112–118.
CHEN Z Y, LI Z P. Experimental model analysis of load responses of ultra-large vessels under different direction waves[J]. Journal of Ship Mechanics. 2017, 36(19): 112–118.
[6] 丁军, 汪雪良, 胡嘉骏, 等. 超大型VLCC波激振动和砰击振动模型试验研究[J]. 船舶力学, 2015, 19(1-2): 144–151.
DING J, WANG X L, HU J J, et al. Experimental investigations of springing and slamming responses of a ultra-VLCC[J]. Journal of Ship Mechanics. 2015, 19(1-2): 144–151.
[7] 丁志龙, 章炜, 吕运. 舰船模型模态试验的研究[J]. 机电技术, 2009(3): 112-116.
DING Z L, ZHANG W, LV Y. Research on modal test of ship model[J]. Electromechanical Technology, 2009(3): 112-116.
[8] 李智劳, 刘凡, 郭艳. 全机地面模态试验支持方式探索研究[J]. 机电信息, 2017(18): 56-57.
LI Z L, LIU F, GUO Y. Exploration and research on support methods for whole aircraft ground modal test[J]. Electromechanical Information, 2017(18): 56-57.
[9] 王桂伦, 姜东, 周李真辉, 等. 铰接式空问桁架结构模态试验研究[J]. 振动与冲击, 2019, 38(12): 252-257.
WANG G L, JIANG D, ZHOU L Z H, et al. Modal experiment for a spherical hinged space truss structure[J]. Journal of Vibration and Shock, 2019, 38(12): 252-257.
[10] 姜东, 钱慧, 朱锐, 等. 基于整体式初始位移的柔性结构低频模态试验方法[J]. 振动与冲击, 2023, 42(5): 313–322.
JIANG D, QIAN H, ZHU R, et al. Low frequency modal test method for flexible structure based on integral initial displacement[J]. Journal of Vibration and Shock, 2023, 42(5): 313–322.