随着可再生能源的持续发展和清洁能源需求的增长,液氢作为一项前景广阔的清洁能源载体,对其生产、运输及储存的安全性探讨显得尤为关键。本文依据现行规范,对海上浮式制氢储氢运输平台的舱室进行深入分析。通过对屈服与屈曲强度的研究,揭示在多种典型工况下平台结构的受力情况与高应力区域的特点。在强度分析基础上,识别出货舱设计中的疲劳关键点,依据DNV与CCS规范要求,并比较两者之间的差异,对这些关键区域进行疲劳性分析。研究结果显示,该平台某些局部关键区域的应力水平较高,在比较了2套规范后,发现连接节点的疲劳寿命均符合标准要求。
With the continuous development of renewable energy and the growing demand for clean energy, it is especially critical to explore the safety of production, transportation and storage of liquefied hydrogen as a promising clean energy carrier. In this study, the compartments of offshore floating hydrogen production, storage and transportation platforms are thoroughly analyzed based on the current codes. Through the study of yield and buckling strengths, the stresses on the platform structure and the characteristics of the high-stress areas are revealed under a variety of typical working conditions. On the basis of the strength analysis, the fatigue critical points in the design of the cargo hold are identified, and the fatigue analysis of these critical areas is carried out based on the requirements of DNV and CCS specifications and comparing the differences between them. The results of the study show that certain localized critical areas of the platform have higher stress levels, and after comparing the two sets of specifications, the fatigue life of the connection nodes is found to be in line with the standard requirements.
2025,47(8): 21-27 收稿日期:2024-7-4
DOI:10.3404/j.issn.1672-7649.2025.08.004
分类号:U663.8
基金项目:国家自然科学基金资助项目(51979130)
作者简介:张健(1977-)男,博士,教授,研究方向为船舶结构力学
参考文献:
[1] ABE ANIT, NAKAMURA M, SATO I, et al. Studies ofthe large-scale sea transportation of liquid hydrogen[J]. International Journal of Hydrogen Energy, 1998, 23(2): 115–121.
[2] KAWASAKI Heavy Industries. Japan’s largest liquid hydrogen storage tank[R]. 2017.
[3] ALKHALEDI A N, SAMPATH S, PILIDIS P. Economic analysis of a zero-carbon liquefied hydrogen tanker ship[J]. International Journal of Hydrogen Energy, 2022, 47(66): 28213-28223.
[4] IBRAHIM O S, SINGLITICO A, PROSKOVICS R, et al. Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies[J]. Renewable and Sustainable Energy Reviews, 2022, 160: 112310.
[5] EDWARDS E C, HOLCOMBE A, BROWN S, et al. Evolution of floating offshore wind platforms: A review of at-sea devices[J]. Renewable and Sustainable Energy Reviews, 2023, 183: 113416.
[6] LEE J, PARK B, KIM K H, et al. Multi-objective optimization of liquid hydrogen FPSO at the conceptual design stage[J]. International Journal of Naval Architecture and Ocean Engineering, 2023, 15: 100511.
[7] ALKHALEDI A N, SAMPATH S, PILIDIS P. A hydrogen fuelled LH2 tanker ship design[J]. Ships and Offshore Structures, 2022, 17(7): 1555-1564.
[8] IACS. Common structural rulesfor double hull oil tankers[S]. 2006.
[9] 王金峰, 王永刚, 周庆等. 半潜式平台关键连接结构节点形式对疲劳强度的影响[J]. 中国海洋平台, 2021, 36(5): 1-7.
WANG J F, WANG Y G, ZHOU Q et al. Influence of joint form of key connection structure on fatigue strength of semi-submersible platform[J]. China Offshore Platforms, 2021, 36(5): 1-7.
[10] DNV-CG-0129, Fatigue assessment of ship structures[S]. 2021.
[11] 中国船级社, 海洋工程结构物疲劳强度评估技术指南[S]. 中国船级社, 2022.