目前常用的预报螺旋桨水动力噪声方法为传统的FW-H方程,对于四极子噪声的处理需要求解复杂的体积分。渗流FW-H方法通过在虚拟渗流控制面上积分来保留四极子声源的贡献,同时降低计算负荷。采用DTMB4119螺旋桨为研究对象,对其敞水与伴流工况的水动力进行求解,并与试验值相比较,验证流场计算的准确性。随后应用渗流FW-H方法计算对应工况下的噪声性能。并对声源积分面范围和形状对声学计算的影响进行分析。渗流FW-H方法能取得较为准确的声学预测结果,且渗流FW-H方法对积分面几何形状不敏感,对积分面的范围选择较为敏感。作为可将所有声源贡献涵盖求解的噪声预报方法,渗流FW-H有着广阔的应用前景。
The commonly used method for predicting propeller hydrodynamic noise is the traditional FW-H equation. For the processing of quadrupole noise, complex volume fractions need to be solved. The Porous FW-H method preserves the contribution of the quadrupole sound source by integrating on the virtual porous control surface, while reducing the computational load. This paper takes the DTMB4119 propeller as the research object, solves the hydrodynamic forces under open water and wake conditions, and compares them with experimental values to verify the accuracy of flow field calculations. Subsequently, the porous FW-H method was applied to calculate the noise performance under corresponding operating conditions. And the influence of the range and shape of the integration surface on acoustic calculations was analyzed. The porous FW-H method achieves relatively accurate prediction results, and the porous FW-H method is not sensitive to the geometric shape of the integration surface, but is more sensitive to the range of the integration surface. As a noise prediction method that can cover and solve the contributions of all sound sources, porous FW-H has broad application prospects.
2025,47(8): 28-34 收稿日期:2024-7-1
DOI:10.3404/j.issn.1672-7649.2025.08.005
分类号:U661.1
作者简介:朱天赐(1998-),男,硕士研究生,研究方向为船舶流体力学
参考文献:
[1] SIEMENS. Simcenter STAR-CCM+ documentation version 2306[R]. Siemens PLM Software, 2023.
[2] SEOL H, JUNG B, SUH J C, et al. Prediction of non-cavitating underwater propeller noise[J]. Journal of Sound & Vibration, 2002, 257(1): 131-156.
[3] 龚京风, 张文平, 明平剑, 等. 螺旋桨低频流噪声模拟方法研究[J]. 中国舰船研究, 2012, 7(5): 14-21.
[4] IANNIELLO S, MUSCARI R, DI MASCIO A. Ship underwater noise assessment by the acoustic analogy. Part I: nonlinear analysis of a marine propeller in a uniform flow[J]. Journal of Marine Science and Technology, 2013, 18(4): 547-570.
[5] 赵鹏. 大型邮轮吊舱推进器水动力性能研究及多参数优化设计[D]. 武汉: 武汉理工大学, 2021.
[6] 李舟睿. 巡航状态下泵喷推进潜艇流动与声学特性研究[D]. 兰州: 兰州理工大学, 2023.
[7] 于连杰, 杨路春, 赵伟文, 等. SUBOFF潜艇非线性流动噪声数值预报研究[J]. 中国造船, 2023, 64(4): 229-239.
[8] ZHANG K, YU C, LIU P, et al. An MPI-OpenMP mixing parallel open source FW-H code for aeroacoustics calculation[C]//2023.
[9] ZHOU Z, WANG H, WANG S. Simplified permeable surface correction for frequency-domain Ffowcs Williams and Hawkings integrals[J]. Theoretical and Applied Mechanics Letters, 2021, 11(4): 100259.
[10] TESTA C, PORCACCHIA F, ZAGHI S, et al. Study of a FWH-based permeable-surface formulation for propeller hydroacoustics[J]. Ocean Engineering, 2021, 240: 109828.
[11] 何嘉华, 王垿桁, 刘秋洪, 等. 可渗透面对流FW-H方程伪声产生机制和抑制方法[J]. 空气动力学学报, 2023, 41(6): 16-25.
[12] 周志腾, 王士召. 抑制运动可渗透面虚假噪声的四极子修正模型[J]. 实验流体力学, 2024, 38(1): 46-56.
[13] WANG Y, GÖTTSCHE U, ABDEL-MAKSOUD M. Sound field properties of non-cavitating marine propellers[J]. Journal of Marine Science and Engineering, 2020, 8(11): 885.
[14] 张楠, 王星, 谢华, 等. 流激噪声数值计算方法及声学积分面影响性研究[J]. 船舶力学, 2016, 20(7): 892-908.
[15] 秦佳佳, 潘治, 万德成. FW-H方程积分面选取对圆柱绕流噪声计算预报结果的影响分析[J]. 水动力学研究与进展A辑, 2024, 39(2): 130-138.
[16] 詹志文, 张凌新, 邓见, 等. DTMB 4119螺旋桨噪声特性的数值模拟[J]. 浙江大学学报(工学版), 2021, 55(4): 767-774.
[17] JESSUP S D. An experimental investigation of viscous aspects of propeller blade flow[D]. ProQuest Dissertations Publishing, 1989.
[18] LIU H L, HUANG T T. Summary of DARPA suboff experimental program data[R]. David W. Taylor Naval Ship Research and Development Center, 1998.