大型舰船在航行过程中,由于海上风向复杂多变以及海浪引起的舰船自身随机运动,使得舰船甲板上方的气流复杂多变,严重影响甲板上方舰载直升机的起降作业安全。两栖舰船表面气流场是舰载直升机/舰船动态界面的重要依托,气流场的品质与特性直接决定着舰载直升机的起降安全特性与航空保障效率。本文以典型两栖攻击舰“黄蜂”的简化模型为算例,基于IDDES方法分别对孤立舰船流场以及旋翼/舰船耦合流场数值模拟,分析不同风向角下垂向速度以及舰面涡系结构的运动与演化规律,发现舰首涡、舷边涡、舰岛尾涡在不同状态下对流场质量的影响,总结其变化规律,为直升机的舰面作业提出指导和建议。
During the navigation of large ships, the airflow above the deck of a ship is complex and variable due to the complex and variable winds at sea and the random motion of the ship itself caused by waves, which will seriously affect the safety of takeoff and landing operations of shipboard helicopters above the deck. Amphibious ship surface airflow field is an important support of the ship based helicopter/ship dynamic interface. The quality and characteristics of the airflow field directly determine the takeoff and landing safety characteristics and aviation support efficiency of the ship based helicopter. In this paper, a simplified model of a typical amphibious assault ship, the Wasp, is used as an example to simulate the flow field of an isolated ship and the Coupled Rotor/Ship Flow Field based on the IDDES method. The vertical velocities at different wind angles and the motion and evolution laws of the ship surface vortex structure are analyzed. The effects of the bow vortex, the port side vortex, and the island tail vortex on the quality of the flow field in different states are found, and their variations are summarized, Provide guidance and advice for shipboard operations of helicopters.
2025,47(8): 41-47 收稿日期:2024-6-24
DOI:10.3404/j.issn.1672-7649.2025.08.007
分类号:V211.3
作者简介:包凯夫(1995-),男,硕士,工程师,研究方向为舰船航空保障系统
参考文献:
[1] 孙杰. 浅谈舰载直升机的海上试飞[J]. 飞行力学, 2001, 19(3): 66-69.
[2] 郑金华, 黄勇, 王毅. 美海军两栖攻击舰的发展分析[J]. 指挥控制与仿真, 2015, 37(3): 85-89,93.
[3] 汪群峰, 金佳佳, 米传民, 等. 基于灰关联深度系数的评价指标客观权重极大熵配置模型[J]. 控制与决策, 2013, 28(2): 235-240.
[4] 胡楚君, 安强林, 王晓成. 舰载直升机着舰风限图计算[J]. 科技导报, 2019, 37(13): 70–75.
[5] 王存仁, 朱玉兵. 直升机一舰组合风限图计算方法研究[J]. 飞行力学, 1996, 14(1): 36–40.
[6] 吴裕平. CFD在舰船甲板流场计算与特性研究中的应用[J]. 直升机技术, 2006, 147(3): 1-4.
[7] DOOLEY G M, CARRICA P M, MARTIN J E, et al. Effects of waves, motions and atmospheric turbulence on ship airwakes development [R]. AIAA-20191328, 2019.
[8] BUCHHOLZ J H J, MARTIN J E, KREBILL A F, et al. Structure of a ship airwake at model and full scale[R]. AIAA-2018-1263, 2018.
[9] SINGH S N , SRINIVASAN B , SHUKLA S . RANS study of flow characteristics over flight deck of simplified frigate ship[C]// Dfd14 Meeting of the American Physical Society. 2014.
[10] 杨思帆, 梁仍康, 邢苗苗, 等. 舰船绕流流场的数值模拟[J]. 西南科技大报, 2023, 38(3): 98-104.
[11] WOODSON S H, GHEE T A. A computational and experimental determination of the air flow around the landing deck of a U. S. navy destroyer (DDG)[C]//AIAA Applied Aerodynamics, Toronto, Ontario Canada, 2005.
[12] 王金玲, 郜冶. 舰船尾部结构对直升机操作区流场的影响[J]. 哈尔滨工业大学学报, 2016, 48(10): 148–154.
[13] 宗昆, 赵鹏程, 王金玲, 等. SA与MILES模型在SFS2舰船空气流场中的模拟应用[J]. 船舶工程, 2017, 39(9): 83–87.
[14] POLSKY S A, CFD prediction of airwake flowfields for ships experiencing beam winds[C]//21st Applied Aerodynamics Conference, 2003.
[15] THORNBER B, STARR M, DRIKAKIS D, Implicit large eddy simulation of ship airwakes[J], Aeronautical. Journal, 2010, 114(1162): 715–736.
[16] FORREST J S, OWEN I, PADFIELD G D, et al. Ship-Helicopter operating limits prediction using piloted flight simulation and time-accurate airwakes, Journal of Aircraft, 2021, 49: 1020–1031.
[17] 操戈, 程捷, 毕晓波, 等. 基于DES的舰船空气尾流场特性分析[J]. 中国舰船研究, 2016, 11(3): 48–54.
[18] 吴文韬. 直升机舰面起降飞行特性及起降风限图研究[D]. 南京: 南京航空航天大学, 2020
[19] 陈华健, 徐国华, 史勇杰. 直升机动态着舰流场下的旋翼气动载荷分析[J]. 南京航空航天大学学报, 2020, 52(2): 232–239.
[20] 李通, 刘戈, 宗昆, 等. 斜风来流下纵摇运动对机-舰耦合流场的影响[J]. 空气动力学学报, 2023, 41(3): 77-88.
[21] ZHAO R, RONG J L, LI H X, et al. Entropy-based detached-eddy simulation of the airwake over a simple frigate shape[J]. Advances in Mechanical Engineer, 2015, 7(11).
[22] CAA(UK). Helicopter turbulence criteria for operations to offshore platforms [S]. CAA Paper, 2004, 03.
[23] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow, 2008, 29: 1638–1649.
[24] LI C, JIANG W, CHENG J, et al. 2016. Comparisons of DES and LES turbulent model for simulation of surface ship airwake[C]//In: Proceedings of the ASME 2016 35th International Conference on Offshore Mechanics and Arctic Engineering, 2016.