大型邮轮上层建筑由密集的薄壁居住舱室和多个大跨度休闲娱乐舱室构成,需使用大量有针对性的非对齐立柱支撑结构,但是该结构会导致极限强度的降低。针对这一问题,选取大型邮轮上层建筑中典型的圆形-圆形非对齐偏心支柱为研究对象,通过压载试验和有限元数值模拟,分析了不同偏心度对支柱结构极限强度和变形的影响。研究发现,偏心度越大,支柱结构的极限强度越小,且偏心度增加会导致应力集中区域扩大和高应力区面积增加。同时,优化分析表明,上支柱垫板厚度取5 mm(与甲板厚度相同)和加强筋厚度在10~12 mm范围内时,能有效减少甲板变形并维持结构的极限强度。此外,加强筋布置在两支柱端连线上可显著提高极限强度。这些结论可为大型邮轮上层建筑非对齐偏心支柱的设计和优化提供参考。
The superstructure of a large cruise ship is composed of dense thin-walled accommodation and multiple long-span recreational accommodation, which requires the use of a large number of targeted non-aligned column support structures, but this structure will lead to a reduction in ultimate strength. To solve this problem, the typical round-round eccentric pillar in the superstructure of a large cruise ship is selected as the research object, and the influence of different eccentricity on the ultimate strength and deformation of the pillar structure is analyzed by ballast test and finite element numerical simulation. It is found that the greater the eccentricity, the smaller the ultimate strength of the pillar structure, and the increase of eccentricity will lead to the expansion of stress concentration area and the increase of high stress area. At the same time, the optimization analysis shows that when the thickness of the upper strut plate is 5 mm (the same as the thickness of the deck) and the thickness of the stiffener is within the range of 10~12 mm, the deck deformation can be effectively reduced and the ultimate strength of the structure can be maintained. In addition, the placement of reinforcement bars on the two pillar end connections can significantly increase the ultimate strength. These conclusions can provide reference for the design and optimization of the non-aligned eccentric pillars of the superstructure of large cruise ships.
2025,47(8): 53-59 收稿日期:2024-6-6
DOI:10.3404/j.issn.1672-7649.2025.08.009
分类号:U663.6
作者简介:李孜秋(2000-),男,硕士研究生,研究方向为船舶与海洋工程
参考文献:
[1] 王娜娜. 豪华邮轮[J]. 船舶工程, 2020, 42(1): 17.
WANG N N. Luxury cruise[J]. Ship Engineering, 2020, 42(1): 17
[2] 高茜, 吴晨飞, 赵欣, 等. 邮轮支柱设计[J]. 船舶与海洋工程, 2024, 40(2): 27-33.
GAO Q, WU C F, ZHAO X, et al[J]. Ship and Ocean Engineering, 2019, 40(2): 27-33.
[3] 余杨, 张菁瑞, 余建星, 等. 邮轮支柱连接节点极限状态研究与可靠性分析[J]. 舰船科学技术, 2023, 45(24): 68-73.
YU Y, ZHANG J R, YU J X, et al. Study on limit state and reliability analysis of cruises pillar Joint[J]. Ship Science and Technology, 2023, 45(24): 68-73.
[4] 谭磊. 大型豪华邮轮上层建筑有效度及异型结构安全研究[D]. 镇江: 江苏科技大学, 2023.
[5] 余建星, 袁祺伟, 葛珅玮, 等. 邮轮支柱板架连接点极限承载力研究[J]. 船舶力学, 2022, 26(2): 224-234.
YU J X, YUAN Q W, GE S W, et al. Study on ultimate bearing capacity of connecting point of cruises' struts[J]. Ship Mechanics, 2022, 26(2): 224-234.
[6] 甘进, 叶文强, 任鹏良, 等. 大型邮轮偏心支柱结构极限承载力研究[J]. 中国造船, 2021, 62(3): 28-39.
GAN J, YE W Q, REN P L, et al. Research on ultimate bearing capacity of eccentric pillar structure of large cruise ship[J]. Shipbuilding of China, 2021, 62(3): 28-39.
[7] FRANTOVÁ M, STEMBERK P, VALA V. Application of strut-and-tie model on eccentric columns[J]. Mechanika, 2011, 182(2): 126-131.
[8] AGHBABIAN M S. Ultimate capacity of struts subjected to eccentric loads [D]. California: University of California, Berkeley, 1952.
[9] ZHANG L, WEI X H. Crack growth life calculation approach of surface cracked landing gear strut under eccentric compression load by bulging effect[J]. International Journal of Fatigue, 2023, 173(10): 52-76.
[10] LIU B, YAO X, LIN Y, et al. Experimental and numerical analysis of ultimate compressive strength of long-span stiffened panels[J]. Ocean Engineering, 2021, 237, 109633.
[11] LIU B, GAO L, AO L, et al. Experimental and numerical analysis of ultimate compressive strength of stiffened panel with openings[J]. Ocean Engineering, 2021, 220, 108453.
[12] 吕政达, 周宏, 陈晨, 等. 大型邮轮甲板舱室肘板屈曲行为及强度分析[J]. 船舶工程, 2024, 46(2): 40-46.
LV Z D, ZHOU H, CHEN C, et al. Analysis of buckling behavior and strength of elbow in deck cabin of large cruise ship [J]. Ship Engineering, 2019, 46(2): 40-46.