船舶在水中航行时,所受到的水动力与船舶的运动状态之间存在着复杂的非线性关系,导致传统的线性控制方法难以取得理想的控制效果。为此,本文引入智能优化预测算法对船舶航行稳定性控制方法进行改进。首先,以航向角偏差为PID控制器输入,输出船舶舵令控制值;然后,利用智能优化预测算法中的改进野马算法优化径向基函数神经网络参数,完成水动力与船舶的运动状态之间的非线性关系线性化处理;最后,结合舵令补偿值与舵令控制值,得到最终的舵令控制值;依据最终的舵令控制值获取舵速控制指令,完成船舶的航行稳定性控制。实验证明,该方法在风速扰动与时变航向下,仍能对船舶航行稳定性进行控制,精准跟踪船舶轨迹。
There is a complex nonlinear relationship between the hydrodynamic forces experienced by a ship while navigating in water and its motion state. Traditional linear control methods are difficult to achieve ideal control effects. Therefore, this paper introduces intelligent optimization prediction algorithms to improve the ship navigation stability control method. Firstly, taking the heading angle deviation as the input of the PID controller, output the ship's rudder command control value; Then, using the improved Wild Horse algorithm in intelligent optimization prediction algorithms, the parameters of the radial basis function neural network are optimized to linearize the nonlinear relationship between hydrodynamics and the motion state of the ship; Finally, by combining the rudder compensation value with the rudder control value, the final rudder control value is obtained; Obtain rudder speed control instructions based on the final rudder command control value to complete ship navigation stability control. Experimental results have shown that this method can still control the stability of ship navigation and accurately track ship trajectories under wind speed disturbances and time-varying heading.
2025,47(8): 60-64 收稿日期:2024-7-10
DOI:10.3404/j.issn.1672-7649.2025.08.010
分类号:TP273
作者简介:柯金丁(1985-),男,讲师,研究方向为航海科学技术、航海职业教育
参考文献:
[1] 刘训文, 褚善东, 骆海洋, 等. 基于自适应神经网络的船舶航向保持预定义性能PI控制[J]. 上海海事大学学报, 2024, 45(1): 10-15.
LIU X W, CHU S D, LUO H Y, et al. PI control of ship course keeping with predefined performance based on adaptive neural network[J]. Journal of Shanghai Maritime University, 2024, 45(1): 10-15.
[2] 韩成浩, 马吉林, 刘佳仑, 等. 基于虚拟仿真测试平台的船舶智能航行系统设计及应用[J]. 中国航海, 2023, 46(1): 148-154.
HAN C H, MA J L, LIU J L, et al. Virtual test platform in design and application of intelligent navigation system[J]. Navigation of China, 2023, 46(1): 148-154.
[3] 于特, 刘佳鹏, 吴超, 等. 基于非线性干扰观测器的无人船与自主水下航行器协同运动控制策略[J]. 上海交通大学学报, 2023, 57(z1): 114-123.
YU T, LIU J P, WU C, et al. USV and AUV cooperative control strategy based on nonlinear disturbance observer[J]. Journal of Shanghai Jiaotong University, 2023, 57(z1): 114-123.
[4] 高诗杭, 张显库, 章沪淦. 基于双重非线性修饰的无人船航向保持自抗扰控制[J]. 船舶工程, 2024, 46(2): 24-33.
GAO S H, ZHANG X K, ZHANG H G. Course keeping active disturbance rejection control of unmanned ship based on dual nonlinear modification[J]. Ship Engineering, 2024, 46(2): 24-33.
[5] 郭琳钰, 高剑, 焦慧锋, 等. 基于RBF神经网络的自主水下航行器模型预测路径跟踪控制[J]. 西北工业大学学报, 2023, 41(5): 871-877.
GUO L Y, GAO J, JIAO H F, et al. Model predictive path following control of underwater vehicle based on RBF neural network[J]. Journal of Northwestern Polytechnical University, 2023, 41(5): 871-877.
[6] WU H , WANG F, XIAO J, et al. A novel fuzzy control path planning algorithm for intelligent ship based on scale factors[J]. Journal of Supercomputing, 2024, 80(1): 202-225.
[7] 余荣臻, 袁剑平, 李俊益. 基于蝗虫优化算法的大型运输船舶自适应控制[J]. 中国舰船研究, 2023, 18(3): 66-74.
YU R Z, YUAN J P, LI J Y. Adaptive control of large transport ship based on grasshopper optimization algorithm[J]. Chinese Journal of Ship Research, 2023, 18(3): 66-74.
[8] 宁君, 张军, 李伟. 预设性能下的输出受限船舶航向切换容错控制[J]. 计算机仿真, 2024, 41(1): 385-389+451.
NING J, ZHANG J, LI W. Output limited ship course switching fault tolerant control with prescribed performance[J]. Computer Simulation, 2024, 41(1): 385-389+451.