结合无人飞行器(Unmanned Aerial Vehicle,UAV)和无人潜水器(Unmanned Underwater Vehicle,UUV)的特点,提出一种新型折叠翼海空跨域航行器(Unmanned Aerial-Underwater Vehicle,UAUV)。在常规潜水器动力学模型的基础上,推导UAUV入水过程中的时变水动力参数,得到完整的UAUV动力学模型。将UAUV的自由入水运动视为初值问题,以避免复杂的控制策略的切换,并对此问题进行优化求解,得到不同任务下最优初始俯仰角与攻角之间的关系。仿真结果表明,所建立的UAUV动力学模型合理,可以反映其入水运动的特征。
In this paper, a novel proof-of-concept design for a folded-wing (UAUV) is proposed, which combines the features of UAV and UUV. The folded wings are adopted to reduce the underwater drag. Combining with the established dynamic model of standard submersible, the time-varying hydrodynamic parameters of during the underwater cruising and water entry process are deduced to get the full dynamic model. The water entry process of UAUV is regarded as a free motion to avoid the instability during the control switch and relevant trajectory optimization problem is studied. The relationship between the optimal origin pitch angle and the attacked angle of two tasks is obtained. The simulation results show that the dynamic model of UAUV is reasonable and can reflect the characteristics of water entry process.
2025,47(8): 92-99 收稿日期:2024-6-5
DOI:10.3404/j.issn.1672-7649.2025.08.016
分类号:V279
基金项目:国家自然科学基金资助项目(52371327)
作者简介:董力阳(1996-),男,博士,研究方向为潜水器总体设计
参考文献:
[1] PETROV G. Flying submarine[J]. Journal of Fleet, 1995(3): 52-53.
[2] GAO A. TECHET, A. H, Design considerations for a robotic flying fish[C]//Oceans MTS/IEEE KONA, 2011.
[3] FABIAN A. FENG Y, SWARTZ E. Hybrid aerial underwater vehicle[J]. Lexington, USA: MIT Lincoln Lab, 2012.
[4] IZRAELEVITZ J, TRIANTAFYLLOU M. Adding in-line motion and model-based optimization offers exceptional force control authority in flapping foils[J]. Journal of Fluid Mechanics, 2014, 742(3): 5-34.
[5] MA K Y. CHIRARATTANANON P, FULLER S B, Controlled flight of a biologically inspired, insect-scale robot[J]. Science, 2013, 340(6132): 603-607.
[6] SIDDALL R, KOVAČ M. Launching the AquaMAV: bioinspired design for aerial-aquatic robotic platforms[J]. Bioinspiration & Biomimetics, 2014, 9(3): 031001.
[7] SIDDALL R, ORTEGA, A. A, KOVAC, M, Wind and water tunnel testing of a morphing aquatic micro air vehicle[J]. Interface Focus, 2017, 7(1): 1-5.
[8] ALZU'BI H, MANSOUR I, RAWASHDEH O. Loon Copter: Implementation of a hybrid unmanned aquatic–aerial quadcopter with active buoyancy control[J]. Journal of Field Robotics, 2018, 35(5): 764–778.
[9] MAIA M M, SONI P, DIEZ F J. Demonstration of an aerial and submersible vehicle capable of flight and underwater navigation with seamless air-water transition[J]. 2015, arXiv preprint arXiv: 1507.01932.
[10] DU H, FAN G, YI J, Autonomous takeoff control system design for unmanned seaplanes[J]. Ocean Engineering, 2014, 85: 21-31.
[11] DU H, FAN G, YI J. Nonlinear longitudinal attitude control of an unmanned seaplane with wave filtering[J]. International Journal of Automation and Computing, 2016, 13(6): 634-642.
[12] YANG X, WANG T, LIANG J. Submersible unmmaned aerial vehicle concept design study[C]//Aviation Technology, Integration, and Operation Conference. Reston, USA, AIAA, 2013.
[13] YAO G, LIANG J, YANG T. Submersible unmanned flying boat: design and experiment[C]//IEEE International Conference on Robotics and Biomimetics. Piscataways, USA, 2014.
[14] 陈怀远. 跨介质飞行器设计及流体动力学特性分析[D]. 南京: 南京航空航天大学, 2019.
[15] BAI Y, JIN Y, LIU C, et al. Nezha-F: Design and analysis of a foldable and self-deployable HAUV[J]. IEEE Robotics and Automation Letters, 2020, 100(5):1–11.
[16] 李丽云, 朱虹. 哈工程研发潜空跨介质航行器试飞成功[N]. 科技日报, 2022-11-05(3).
[17] DONG L , DING W , WEI Z , et al. Numerical study on the water entry of two-dimensional airfoils by BEM[J]. Engineering Analysis with Boundary Elements, 2023, 151: 83-100.
[18] 刘永学. 飞机飞行力学[M]. 北京: 航空工业出版社, 2020.
[19] 严卫生. 鱼雷航行力学[M]. 西安: 西北工业大学出版社, 2005.
[20] DONG L, WEI Z, ZHOU H, et al. Numerical study on the water entry of a freely falling unmanned aerial-underwater vehicle[J]. Journal of Marine Science and Engineering, 2023, 11(3): 552.