本文提出一种新型仿生外形多对翼水下滑翔机设计方案,通过CFD仿真优选性能优异的主体型线和确定多对翼布置方案,达到降低航行阻力的目的。之后在仿生外形的基础上对滑翔翼的安装位置、后掠角和攻角等参数对滑翔机的水动力性能展开分析。结果表明,鲭鱼外形的航行阻力最小;在相同攻角下,升阻比随滑翔翼安装位置后移而增大,随后掠角增大而减小;滑翔翼位于距滑翔机艏部0.65L处且后掠角小于20°时,滑翔机在0~10°攻角下所受升阻比较大,俯仰力矩值最小,兼顾良好的静稳性和滑翔经济性。本文验证了仿生外形多对翼水下滑翔机方案的可行性,为后续滑翔机的仿生设计和多对滑翔翼的应用提供参考。
This paper proposes a novel bionic shape multi-pair wing underwater glider design scheme and optimises the main body profile with excellent performance through CFD simulation. The multi-pair wing arrangement scheme is determined to achieve the purpose of reducing the navigational drag. After that, the hydrodynamic performance of the glider is analyzed on the basis of the mackerel shape with respect to the installation position of the glider wings, the swept back angle and the angle of attack and other parameters. The results show that the mackerel shape has the lowest navigational drag; at the same angle of attack, the lift-to-drag ratio increases with the glider mounting position shifted backward, and decreases with the increase of the swept-back angle. When the glider wing is located at 0.65L from the bow of the glider and the back-sweep angle is less than 20°, the lift resistance ratio of the glider is larger and the pitching moment value is minimized at the angle of attack of 0~10°, which is a good balance between good static stability and gliding economy. This paper serves to verify the feasibility of the bionic shape multi-pair wing underwater glider programme, while simultaneously providing invaluable research references for the bionic design of subsequent gliders and multi-pair glider applications.
2025,47(8): 100-106 收稿日期:2024-6-13
DOI:10.3404/j.issn.1672-7649.2025.08.017
分类号:U674.941
作者简介:朱猛(2000-),男,硕士研究生,研究方向为水下航行器结构设计及流体分析
参考文献:
[1] 石晴晴, 牛文栋, 张润锋, 等. 水下滑翔机路径规划研究综述及展望[J]. 中国舰船研究, 2023, 18(1): 29-42+51.
SHI Q Q, NIU W D, ZHANG R F, et al. Review and prospects of underwater glider path planning[J]. Chinese Journal of Ship Research, 2023, 18(1): 29-42+51.
[2] 屈新雨, 王征. 水下滑翔机研究应用现状及未来展望[J]. 船电技术, 2023, 43(11): 27-32.
QU X Y, WANG Z. Research and application status of under water glider and future prospects[J]. Marine Electric & Electronic Engineering, 2023, 43(11): 27-32.
[3] STOMMEL H. The SLOCUM mission[M]. Oceanography, 1989, 2(1): 22-25.
[4] ERIKSEN C C, OSSE T J, LIGHT R D, et al. S-eaglider: A long-range autonomous underwater vehicle for oceanographic research[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 424-436.
[5] SHERMAN J, DAVIS R, OWENS W B, et al. The autonomous underwater glider "Spray"[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 437-446.
[6] 宋保维, 潘光, 张立川, 等. 自主水下航行器发展趋势及关键技术[J]. 中国舰船研究, 2022, 17(5): 27-44.
SONG B W, PAN G, ZHANG L C, et al. Development trend and key technologies of autonomous underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(5): 27-44.
[7] JONES C P. Slocum glider persistent oceanography, In Autonomous Underwater Vehicles (AUV)[J]. IEEE/OES, 2012: 1-6.
[8] SPEZIA L. Inovative glider technology[R]. ACSA Underwater GPS, 2008.
[9] FURLONG M E, PAXTON D, STEVENSON P, et al. Autosub Long Range: A long range deep diving AUV for ocean monitoring. Autonomous Unde-rwater Vehicles (AUV)[J]. IEEE/OES. IEEE, 2012: 1-7.
[10] WANG S X, SUN X J, WANG Y H, et al. Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider[J]. China Ocean Engineering, 2011, 25(1): 97-112.
[11] LIU F, WANG Y H, WANG S X. Development of the Hybrid Underwater Glider Petrel-II[J]. Sea Technology. 2014, 55(4): 51-54.
[12] 刘庆萍. 水—固界面系统二元仿生耦合减阻研究[D]. 吉林: 吉林大学, 2013.
[13] 郭松子, 马俊, 李志印, 等. 拍动式仿鹞鲼水下机器人设计及其游动性能试验[J]. 中国舰船研究, 2022, 17(4): 139–144.
GUO S Z, MA J, LI Z Y, et al. Design and swimming test of myliobatid-inspired robot[J]. Chinese Journal of Ship Research, 2022, 17(4): 139–144.
[14] ZHANG D Y, LUO Y H, XIANG L I, et al. Numerical simulation and experimental study of drag reducing surface of a real shark skin[J]. Journal of Hydrodynamics, 2011, 23(2): 204-211.
[15] KRAMER M O. Boundary layer stabilization by distributed damping[J]. Naval Engineers Journal, 2010, 72(1): 25-34.
[16] BARRETT D S, TRIANTAFYLLOU M S, YUE D K P, et al. Drag reduction in fish-like locom-otion[J]. Journal of Fluid Mechanics, 1999, 392: 183-212.
[17] 王献孚. 船用翼理论[M]. 北京: 国防工业出版社, 1998.
[18] 柏开祥, 郑伟涛, 王德恂, 等. 基于ITTC-57对于帆板阻力成分的计算与分析[J]. 武汉理工大学学报, 2006(5): 98-101.
BAI K X, ZHENG W T, WANG D X, et al. Calculating and analyzing of sailboard's resistance component basing on ITTC57 friction-resistance formula[J]. Journal of Wuhan University of Technology, 2006(5): 98-101.
[19] 孙伟成, 宋大雷, 严志鹏, 等. 基于水动力参数设计的水下滑翔机横向静稳定性改善研究[J]. 舰船科学技术, 2021, 43(15): 68-76.
SUN W C, SONG D L, YAN Z P, et al. The improvement of lateral static stability for underwater glider based on hydrodynamic parameters[J]. Ship Science and Technology, 2021, 43(15): 68-76.
[20] 宋方希. 基于CFD的混合驱动水下航行器外形研究[D]. 天津: 天津大学, 2012.
[21] 吴衍志. 基于可变形水动力外形的泵喷推进水下滑翔机附体结构优化研究[D]. 武汉: 华中科技大学, 2023.