针对多节点分布式协同定位过程中,由于声呐系统存在误差、外部环境噪声和人为干扰等因素的影响,导致产生错误或较大偏差的测量数据,即离异值的问题,提出基于局部离群因子算法(LOF)聚类的分布式协同定位技术。该方法在分析定位结果分布特征的基础上,利用LOF聚类技术确定定位结果中的离群定位点,进而可以得到离群定位点所对应的分布式节点,然后选择合适阈值筛选存在问题的节点并将其剔除,最后将剩余分布式节点测量结果利用加权融合算法进行处理,完成最终定位。仿真实验证明,该技术有效降低了测距不准确对目标定位的影响,定位误差均值由1.33降低至0.32,有效提高了系统定位精度。
A distributed collaborative positioning technology based on LOF clustering is proposed to address the issue of measurement data with errors or significant deviations, i.e. outliers, caused by inaccurate sonar systems, external environmental noise, and human interference in the process of multi node distributed collaborative positioning. On the basis of analyzing the distribution characteristics of localization results, this method uses Local Outlier Factor Algorithm (LOF) clustering technology to determine the outlier localization points in the localization results, and then obtains the distributed nodes corresponding to the outlier localization points. After selecting an appropriate threshold, the problematic nodes are screened and removed. Finally, the remaining distributed node measurement results are processed using a weighted fusion algorithm to complete the final localization. Through simulation experiments, it has been proven that this technology effectively reduces the impact of inaccurate ranging on target positioning error reduced from 1.33 to 0.32, effectively improving the systems positioning accuracy.
2025,47(8): 126-132 收稿日期:2024-6-17
DOI:10.3404/j.issn.1672-7649.2025.08.021
分类号:U675.79
基金项目:国家重点研发计划资助项目(2022YFE0136800)
作者简介:胡鹏鹏(1997-),女,硕士,工程师,研究方向为水下目标探测技术
参考文献:
[1] 李守军, 包更生, 吴水根. 水声定位技术的发展现状与展望[J]. 海洋技术, 2005(1): 130-135.
LI S J, BAO G S, WU S G. The development status and prospects of underwater acoustic positioning technology[J]. Marine technology, 2005(1): 130-135.
[2] 蒋俊正, 李杨剑, 赵海兵, 等. 一种大规模传感器网络节点分布式定位算法[J]. 电子与信息学报, 2019, 41(12): 3022-3028.
JIANG J Z, LI Y J, ZHAO H B, et al. A distributed localization algorithm for large-scale sensor network nodes[J]. Journal of Electronics and Information Technology, 2019, 41(12): 3022-3028.
[3] 徐莎莎, 周芳. 基于交替修正牛顿法的分布式传感器定位算法[J]. 科学技术与工程, 2021, 21(32): 13744-13752.
XU S S, ZHOU F. Distributed sensor localization algorithm based on alternating correction Newton method[J]. Science and Technology and Engineering, 2021, 21(32): 13744-13752.
[4] 桑志远. 基于多参数联合观测的分布式定位算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.
[5] 王玉. 水下目标协同定位及跟踪算法研究[D]. 成都: 电子科技大学, 2019.
[6] SHANG Y, RUML W, ZHANG Y, et al. Localization from mere connectivity[C]//Acm International Symposium on Mobile Ad Hoc Networking & Computing, 2003.
[7] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: A survey[J]. ACM Computing Surveys (CSUR), 2009, 41(3): 1-58.
[8] 刘财辉, 刘地金. 离群点检测的邻近性方法综述[J]. 计算机工程与应用, 2022, 58(21): 1-12.
LIU C H, LIU D J. Overview of proximity methods for outlier detection[J]. Computer Engineering and Applications, 2022, 58(21): 1-12.
[9] 陈豫禹, 杨宇明, 李厚彪. 基于网格密度峰值聚类的测向交叉定位[J]. 电光与控制, 2023, 30(4): 40-44+60.
CHEN Y Y, YANG Y M, LI H B. Direction finding cross localization based on grid density peak clustering[J]. Electrooptic and Control, 2023, 30(4): 40-44+60.
[10] 李轶. 基于优化神经网络与聚类的加权定位算法[J]. 信息技术, 2023(5): 13-18+24.
[11] 朱文豪.一种基于聚类的离群点检测方法[D]. 郑州: 华北水利水电大学, 2022.
[12] CAFFERY J J. A new approach to the geometry of TOA location[C]//IEEE Topical Conference, 2000.
[13] 孙佩刚, 赵海, 韩光洁, 等. 混沌三角形定位参考点选择算法[J]. 计算机研究与发展, 2007, 44(12): 1987.
SUN P G, ZHAO H, HAN G J, et al. Chaos triangle positioning reference point selection algorithm[J]. Computer Research and Development, 2007, 44(12): 1987.