在深海油气资源开采与装备开发中,随着水深增加,静水压溃失稳成为结构最主要的失效模式。以南海奋进号FPSO内转塔单点锥形浮筒在深水回接钢缆作业为例,研究了锥形壳式结构受压极限承载力。系统地总结了结构屈曲失稳理论和方法,对锥形壳式结构振型、特征值屈曲以及是否考虑初始几何缺陷敏感性的非线性屈曲等进行了深入分析。结果表明,锥形壳式结构屈曲失稳与最大变形无相关性,考虑初始几何缺陷的非线性屈曲方法可以较准确地评估结构的极限承载力,为中国南海深水油气和装备开发中壳式锥形结构设计提供有益的参考与借鉴。
In the exploitation of deep-sea oil and gas resources and equipment development, the hydrostatic pressure collapse and instability of structures become the main failure mode as the water depth increases. Taking the internal turret of NHFJ FPSO as an example for deep water reconnection of steel wire, the ultimate compressive bearing capacity of a conical shell structure was studied. It system summarizes the theory and methods of structural buckling instability, and conducts in-depth research on the vibration mode, eigenvalue buckling, and nonlinear buckling of conical shell structures with or without considering the sensitivity of initial geometric defects. The results show that structural buckling instability is not correlated with maximum structural deformation. The nonlinear buckling method considering initial geometric defects can accurately evaluate the ultimate bearing capacity of conical shell structures, providing useful reference and inspiration for the design of conical shell structures in oil and gas and equipment development in the South China Sea.
2025,47(8): 133-138 收稿日期:2024-7-5
DOI:10.3404/j.issn.1672-7649.2025.08.022
分类号:TE95
基金项目:中国海洋石油集团级重点攻关课题(KJGJ-2023-0001)
作者简介:黄曙光(1977-),男,硕士,高级工程师,研究方向为海洋工程浮式结构物
参考文献:
[1] 白雪平, 李达, 范模, 等. 内转塔式单点系泊系统设计方法研究[J]. 海洋工程, 2015(5): 36-42.
[2] 谢锏辉, 杨料荃. 浮式生产储油卸油装置单点系泊系统综述[J]. 海洋工程装备与技术, 2014(9): 189-193.
[3] 刘生法, 内转塔式单点系泊系统介绍[J]. 广东造船, 2014(2): 25-31.
[4] 琚选择, 李自力, 董宝辉, 等. 深水FPSO单点系泊主轴承疲劳寿命计算分析[J]. 舰船科学技术, 2022(7): 100-106.
[5] 乔丕忠, 王艳丽, 陆林军. 圆柱壳稳定性问题的研究进展[J]. 力学季刊, 2018, 39(2): 223-236.
[6] 王博, 郝鹏, 田阔. 加筋薄壳结构分析与优化设计研究进展[J]. 计算力学学报, 2019, 36(1): 1-12.
[7] 王博, 郝鹏, 杜凯繁, 等. 计及缺陷敏感性的网格加筋筒壳结构轻量化设计理论与方法[J]. 中国基础科学, 2018, 20(3): 28-31.
[8] 陈志平, 唐小雨, 苏文强, 等. 薄壁圆柱壳轴压屈曲研究技术进展[C]//第九届全国压力容器学术会议, 2017.
[9] JIAO P, CHEN Z, TANG X, et al. Design of axially loaded isotropic cylindrical shells using multiple perturbation load approach –Simulation and validation[J]. Thin-Walled Structures, 2018(133): 1-16.
[10] WAGNER H N R, HÜHNE C. Robust knockdown factors for the design of cylindrical shells under axial compression : Potentials , practical application and reliability analysis International[J]. Journal of Mechanical Sciences, 2018(135): 410-430.
[11] HUTCHINSON J W. Knockdown factors for buckling of cylindrical and spherical shells subject to reduced biaxial membrane stress International[J]. Journal of Solids and Structures, 2010, 47(10): 1443-1448.
[12] ARBOCZ J, STARNES JR J H. Future directions and challenges in shell stability analysis[J]. Thin-Walled Structures, 2002, 40(9): 729-754.
[13] HÜHNE C, ROLFES R TESSMER J. A new approach for robust design of composite cylindrical shells under axial compression[C]//European Conference on Spacecraft Structures, Materials and Mechanical Testing. Nordwijk, 2005.
[14] HILBURGER M W, NEMETH M P, STARNES Shell buckling design criteria based on manufacturing imperfection signatures [J]. AIAA Journal, 2006, 44(3): 654-663.
[15] DEGENHARDT R, BRTHGE A, KLING A, et al. Probabilistic approach for improved buckling knock-down factors of CFRP cylindrical Shells[C]//18th Engineering Mechanics Division Conference (EMD2007), 2007.
[16] 田阔. 基于多保真度建模的多层级筒壳屈曲分析及优化方法研究[D]. 大连: 大连理工大学, 2018.
[17] 马炳成, 钱若军, 屈曲分析理论述评和研究[C]//第四届海峡两岸结构与岩土工程学术研讨会论文集, 2007.
[18] 张鸿鑫, 李强, 秦珊珊, 等 基于材料非线性海上风力发电机塔架屈曲分析[J]. 船舶工程, 2023(增刊2): 110-116.
[19] 杜静, 周云鹏, 郭知智. 大型水平轴风力发电机组塔筒非线性屈曲分析[J]. 太阳能学报, 2016(12): 3179-3183.
[20] 万力, 陶伟明, 吴莘馨, 等. 由初始几何缺陷引起的薄壁压力容器在内压作用下的局部非线性屈曲[J]. 核动力工程, 2004(10): 434-438.
[21] 张传俊, 张春芳, 毕厚煌. 基于ABAQUS的筋板件线性与非线性屈曲缺陷分析[J]. 兰州文理学院学报, 2019(11): 28-31.
[22] DNVGL-RP-C208 Determination of structural capacity[S]. 2020.
[23] HAYNIEWT, HILBURGER M W. Comparison of methods to predict lower bound buckling loads of cylinders under axial compression[C]//51st AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando: AIAA, 2010.
[24] TENG J G, SONG C Y. Numerical models for nonlinear analysis of elastic shells with eigenmode-affine imperfections[J]. International Journal of Solids and Structures, 2001, 38(18): 3263-3280.
[25] 张建, 周通, 王纬波, 等. 模态缺陷条件下复合材料柱形壳屈曲特性[J]. 复合材料学报, 2017(3): 588-596.
[26] EN 1993-1-6. Eurocode 3: Design of steel structures[S]. Brussels: European Committee for Standardizations, 1999.
[27] DNV-OS-C401 Fabrication and Testing of Offshore Structures[S]. 2015.