复杂海洋环境中,舰船速度控制忽略外部环境因素影响,仅关注动力系统特性,难以准确反映舰船状态变化,导致控制效果不佳。因此,提出基于模型预测控制的舰船速度控制算法。建立舰船离散时间状态空间方程,利用模型预测控制,预测舰船速度状态,设定约束并构建舰船速度控制目标函数,滚动优化方式求解,得到舰船速度控制方案,确保舰船稳定控制。实验证明,该算法在舰船加速及排水量波动多种情况下,均能有效控制舰船速度,使舰船速度快速稳定在目标速度附近,且超调量小,展现出优越的抗干扰性能,使该方法在船舶自动驾驶、海上航行安全及舰船动力系统优化等领域具有广泛的应用前景,为提升舰船在复杂海洋环境中的航行性能和安全性提供了有力的技术支持。
In complex marine environments, ship speed control ignores external environmental factors and only focuses on the characteristics of the power system, making it difficult to accurately reflect changes in the ship's state, resulting in poor control effectiveness. Therefore, a ship speed control algorithm based on model predictive control is proposed. Establish a discrete-time state space equation for the ship, use model predictive control to predict the ship's speed state, set constraints and construct the ship's speed control objective function, solve through rolling optimization, and obtain the ship's speed control scheme to ensure stable ship control. Experimental results have shown that this algorithm can effectively control the speed of ships under various conditions such as ship acceleration and displacement fluctuations, ensuring that the ship speed quickly stabilizes near the target speed with minimal overshoot and superior anti-interference performance. This method has broad application prospects in areas such as ship autonomous driving, maritime navigation safety, and ship power system optimization, providing strong technical support for improving the navigation performance and safety of ships in complex marine environments.
2025,47(8): 166-170 收稿日期:2024-8-12
DOI:10.3404/j.issn.1672-7649.2025.08.028
分类号:U664.82
作者简介:闫娓(1985-),女,讲师/工程师, 研究方向为机床电气控制和智能控制
参考文献:
[1] 闵德权, 江可鉴, 刘茹. 基于北极航线通航期冰情的多种船舶航速优化[J]. 重庆交通大学学报(自然科学版), 2022, 41(9): 53-60.
MIN D Q, JIANG K J, LIU R. Speed optimization of multiple ships based on ice condition of arctic route during navigation period[J]. Journal of Chongqing Jiaotong University(Natural Sciences), 2022, 41(9): 53-60.
[2] 李伟, 刘钊, 张明阳, 等. 海港航道船舶航速控制标准量化方法[J]. 中国航海, 2022, 45(2): 1-7.
LI W, LIU Z, ZHANG M Y, et al. Standard method of ship speed control in harbor water area[J]. Navigation of China, 2022, 45(2): 1-7.
[3] 李振福, 朱丽龙, 刘坤, 等. 减排背景下北极东北航线船舶航速多目标优化[J]. 上海海事大学学报, 2023, 44(2): 45-51.
LI Z F, ZHU L L, LIU K, et al. Multi-objective optimization of ship speed on Arctic northeast route under background of emission reduction[J]. Journal of Shanghai Maritime University, 2023, 44(2): 45-51.
[4] HAN Y, MA W, MA D. Green maritime: an improved quantum genetic algorithm-based ship speed optimization method considering various emission reduction regulations and strategies[J]. Journal of Cleaner Production, 385(20): 135814.
[5] 王壮, 王凯, 黄连忠, 等. 海况识别下的船舶航速动态优化方法[J]. 哈尔滨工程大学学报, 2022, 43(4): 488-494.
WANG Z, WANG K, HUANG L Z, et al. Dynamic optimization method of ship speed based on sea condition recognition[J]. Journal of Harbin Engineering University, 2022, 43(4): 488-494.
[6] 李振福, 王婷婷, 邱嘉欣. 考虑自愿速度损失和货主满意度的北极东北航线船舶航速优化[J]. 上海海事大学学报, 2024, 45(2): 53-61+74.
LI Z F, WANG T T, QIU J X. Ship speed optimization for Northern Sea Route considering voluntary speed loss and cargo owner satisfaction[J]. Journal of Shanghai Maritime University, 2024, 45(2): 53-61+74.
[7] 张隆辉, 彭秀艳, 魏纳新, 等. 基于增广拉格朗日差分进化算法的长江内河船舶航速优化问题研究[J]. 船舶力学, 2023, 27(8): 1119-1129.
ZHANG L H, PENG X Y, WEI N X, et al. Speed optimization of inland ships on the Yangtze River based on augmented Lagrange differential evolution algorithm[J]. Journal of Ship Mechanics, 2023, 27(8): 1119-1129.
[8] 余瑜, 汪健, 杨文康. 基于逆向预测的MMC多步模型预测控制[J]. 计算机仿真, 2023, 40(5): 166-171.
YU Y, WANG J, YANG W K. Multi-step model predictive control of mmc based on reverse prediction[J]. Computer Simulation, 2023, 40(5): 166-171.