当前,氯酸盐化学供氧装置被各国海军广泛应用于潜艇舱室氧气供应中。本文分析了潜艇舱室氯酸盐化学供氧装置的工作原理与装置组成,分别从提高供氧稳定性、增强本质热安全性、防止外部污染和控制毒害气体释放4个方面归纳了近年来氯酸盐化学供氧装置的研究进展,指出未来需要在建立实际条件下的氯酸盐催化分解过程及动力学特征认知、深化对金属燃料与催化剂耦合效应的理解与运用、明晰毒害气体来源与生成机制等方向继续深入开展研究工作。本文可为潜艇舱室新型化学供氧装置的设计开发提供参考。
At present, the chlorate-based chemical oxygen generation apparatus has been extensively employed by the world’s navies for the submarine cabin oxygen supply. This review first introduced the general principle and composition of the chemical oxygen generation apparatus for submarine cabins. Then, recent progress on the chemical oxygen generation apparatus, including improving the oxygen supply stability, enhancing the intrinsic thermal safety, preventing the external pollution and controlling the toxic gas release, was summarized. In the end, more research efforts were suggested to understand the catalytic decomposition process and kinetics of chlorate under more practical conditions, utilize the coupling effects of the metal fuel and catalyst, as well as clarify the sources and generation mechanisms of toxic gases. We believe this review will contribute to the design and development of novel chemical oxygen generation apparatus for submarine cabins.
2025,47(9): 1-8 收稿日期:2024-5-28
DOI:10.3404/j.issn.1672-7649.2025.09.001
分类号:E925;U664.6
基金项目:国家自然科学基金面上项目(21876204)
作者简介:王馨博(1993-),男,博士,讲师,研究方向为潜艇舱室空气质量控制
参考文献:
[1] 张传钊, 刘应书, 王浩宇, 等. 密闭建筑空间缺氧环境下富氧特性研究[J]. 工程科学学报, 2018, 40(11): 1380-1388.
[2] 姜磊, 何再明, 李栋梁. 基于氧烛供氧的“奋斗者”号载人舱内一氧化碳浓度分析[J]. 舰船科学技术, 2022, 44(21): 30-35.
JIANG L, HE Z M, LI D L. Analysis of carbon monoxide concentration in manned compartment of Fen dou zhe when chemical oxygen generator was used for oxygen supply[J]. Ship Science and Technology, 2022, 44(21): 30-35.
[3] LIU J, JIN L, GAO N, et al. A review on chemical oxygen supply technology within confined spaces: challenges, strategies, and opportunities toward chemical oxygen generators (COGs)[J]. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(8): 925-937.
[4] 朱耿溪, 李艳, 孔庆平. 密闭空间化学制氧技术研究进展[J]. 现代制造技术与装备, 2022, 58(8): 105-107+115.
[5] 姜磊, 刘帅, 高成君, 等. 氧烛在全海深载人潜水器中应用的适用性分析[J]. 中国造船, 2019, 60(2): 196-206.
[6] 田朴. 高原小型便携式供氧装置的现状及发展趋势[J]. 现代盐化工, 2021(3): 106-108.
[7] 马帅, 石梅生, 张利芳, 等. 野战条件下制氧技术与装备的研究进展[J]. 医疗卫生装备, 2021, 42(08): 67-74.
[8] 范敏. 氧烛的研究现状与发展[J]. 舰船科学技术, 2008, 28(7): 16-20.
FAN M. The research on actuality and development of oxygen candle[J]. Ship Science and Technology, 2008, 28(7): 16-20.
[9] 倪伟, 颜欢, 王朋辉, 等. 潜艇舱室供氧技术研究进展[J]. 舰船科学技术, 2016, 38(9): 138-141.
NI W, YAN H, WANG P H, et al. Oxygen supplying technologies in submarine cabin: a review[J]. Ship Science and Technology, 2016, 38(9): 138-141.
[10] GAO N, MA C, KARIMAN K, et al. Coupling effect of metals and oxides on the oxygen supply performance of sodium chlorate oxygen candle[J]. Journal of Chemistry, 2021: e6088484.
[11] GRAF J, DUNLAP C, HAAS J, et al. Development of a solid chlorate backup oxygen delivery system for the international space station[C]//30th International Conference on Environmental Systems. Toulouse, France, 2000.
[12] SHAFIROVICH E, ZHOU C, MUKASYAN A S, et al. Combustion fluctuations in low-exothermic condensed systems for emergency oxygen generation[J]. Combustion and Flame, 2003, 135(4): 557-561.
[13] SHAFIROVICH E, MUKASYAN A S, VARMA A, et al. Mechanism of combustion in low-exothermic mixtures of sodium chlorate and metal fuel[J]. Combustion and Flame, 2002, 128(1): 133-144.
[14] DIAKOV V, SHAFIROVICH E, VARMA A. A Numerical study of combustion stability in emergency oxygen generators[J]. AIChE Journal, 2006, 52(4): 1495-1501.
[15] MACHADO M A, RODRIGUEZ D A, ALY Y, et al. Nanocomposite and mechanically alloyed reactive materials as energetic additives in chemical oxygen generators[J]. Combustion and Flame, 2014, 161(10): 2708-2716.
[16] SHAFIROVICH E, ZHOU C, EKAMBARAM S, et al. Catalytic effects of metals on thermal decomposition of sodium chlorate for emergency oxygen generators[J]. Industrial & Engineering Chemistry Research, 2007, 46(10): 3073-3077.
[17] 范敏, 卜建杰, 郑邯勇, 等. 钴的氧化物对氧烛药块分解的催化作用[J]. 舰船科学技术, 2007(6): 126-129.
FAN M, BU J J, ZHENG H Y, et al. Cobalt oxide compounds and its catalytic performance for decomposition of oxygen-generating candle[J]. Ship Science and Technology, 2007(6): 126-129.
[18] GAO N, DAI Y, JIN L, et al. Effect of metals and Co3O4 on the thermal decomposition reaction of sodium chlorate in an area of refuge[J]. Chemical Papers, 2020, 74(10): 3475-3480.
[19] JIN L Z, WANG S, LIU S C, et al. Development of a low oxygen generation rate chemical oxygen generator for emergency refuge spaces in underground mines[J]. Combustion Science and Technology, 2015, 187(8): 1229-1239.
[20] 王伟象, 金龙哲, 高娜, 等. 井下避险空间双层结构氧烛供氧性能研究[J]. 煤炭技术, 2016, 35(6): 201-203.
[21] WANG W, JIN L, GAO N, et al. The Oxygen generation performance of hollow-structured oxygen candle for refuge space[J]. Journal of Chemistry, 2018: e7469783.
[22] 王雅娟. 氧烛隔热结构的设计[J]. 舰船科学技术, 2010, 32(12): 95-98.
WANG Y J. Design of thermal insulation for the oxygen generating candles[J]. Ship Science and Technology, 2010, 32(12): 95-98.
[23] SHAFIROVICH E, GARCIA A, NARAYANA SWAMY A K, et al. On feasibility of decreasing metal fuel content in chemical oxygen generators[J]. Combustion and Flame, 2012, 159(1): 420-426.
[24] RUDLOFF W, FREEMAN E. Catalytic effect of metal oxides on thermal-decomposition reactions. I. The mechanism of the molten-phase thermal decomposition of potassium chlorate in mixtures with potassium chloride and potassium perchlorate[J]. Journal of Physical Chemistry, 1969, 73(5): 1209-1215.
[25] RUDLOFF W, FREEMAN E. Catalytic effect of metal oxides on thermal decomposition reactions. II. Catalytic effect of metal oxides on the thermal decomposition of potassium chlorate and potassium perchlorate as detected by thermal analysis methods[J]. Journal of Physical Chemistry, 1970, 74(18): 3317-3324.
[26] RUDLOFF W, FREEMAN E. The Catalytic effects of metal-oxides on thermal-decomposition reactions. III. The influence of structural and electronic defects in iron-oxides on their catalytic effectiveness with respect to the thermal-decomposition of potassium chlorate[J]. Journal of Thermal Analysis, 1980, 18(2): 359-369.
[27] LIU P A, WANG M J, WANG L, et al. Study on nano-metal oxide and carbon nanotube composites on thermal decomposition of potassium perchlorate[J]. Bulletin of the Korean Chemical Society, 2019, 40(4): 324-331.
[28] CHATURVEDI S, DAVE P N. Nano-metal oxide: Potential catalyst on thermal decomposition of ammonium perchlorate[J]. Journal of Experimental Nanoscience, 2012, 7(2): 205-231.
[29] ZHANG Y, KSHIRSAGAR G, ELLISON J, et al. Catalytic effects of non-oxide metal-compounds on the thermal-decomposition of sodium-chlorate[J]. Industrial & Engineering Chemistry Research, 1993, 32(11): 2863-2865.
[30] ZHANG Y, KSHIRSAGAR G, ELLISON J, et al. Catalytic and inhibiting effects of barium peroxide and hydroxide on the decomposition of sodium-chlorate[J]. Thermochimica Acta, 1995, 261: 119-124.
[31] 张彦军. 便携式无燃料低温燃烧氧烛工艺研究[J]. 兵工学报, 2019, 40(6): 1317-1322.
[32] 王亚, 邓康清, 周兴明, 等. 固体氧气发生器温度场仿真分析[J]. 中国个体防护装备, 2023(1): 15-20.
[33] 赵小平, 王雅娟, 马丽娥. 基于Ansys软件的氧烛防护筒的模拟与设计[J]. 舰船防化, 2012(2): 1-4.
[34] 翟康. 大容量氧烛隔热防护与热损分析[J]. 四川兵工学报, 2015, 36(12): 35-38.
[35] 朱耿溪. 化学产氧器隔热结构分析研究[J]. 现代制造技术与装备, 2023, 59(1): 13-16.
[36] HESLOP P, BLAIR P S, FLEMING P, et al. The confidential inquiry into premature deaths of people with intellectual disabilities in the UK: a population-based study[J]. The Lancet, 2014, 383(9920): 889-895.
[37] KEDDY C P, HAAS J P, STARRITT L. Investigation, analysis, and testing of self-contained oxygen generators: WSTF-IR-1129-001-08[R]. Las Cruces: U. S. National Aeronautics and Space Administration, 2008.
[38] MCCARRICK A, HAAS J, JOHNSON K, et al. U. S. navy sodium chlorate oxygen candle safety[C]//41st International Conference on Environmental Systems. Portland, Oregon U. S. : American Institute of Aeronautics and Astronautics, 2011.
[39] GOODALL A. The development of a Non-powered oxygen generator for royal navy submarines[C]//42nd International Conference on Environmental Systems. San Diego, California U. S.: American Institute of Aeronautics and Astronautics, 2012.
[40] SAMUEL P S. Chlorine gas filtering material suitable for use in a chemical oxygen generator: US Patent 4687640[P]. 1987.
[41] 杨振峰, 孔庆平, 韩卫敏, 等. 活性炭-氢氧化锂复合材料的制备及性能研究[J]. 现代盐化工, 2021, 48(3): 29-31.
[42] ZHANG Y, KSHIRSAGAR G, CANNON J C. Functions of barium peroxide in sodium chlorate chemical oxygen generators[J]. Industrial & Engineering Chemistry Research, 1993, 32(5): 966-969.
[43] 马军, 张彦军, 田涛, 等. 一种化学氧烛制氧器及其制作方法与制氧方法: CN201811472700.5[P]. 2019.
[44] 韩旭, 茅靳丰, 程宝义, 等. 微波诱导技术用于氧烛制氧的理论研究[J]. 中国安全科学学报, 2006(4): 67-71+145.
[45] MACHADO M A, RODRIGUEZ D A, SHAFIROVICH E, et al. Selection of nanocomposite reactive materials for using in oxygen and hydrogen generators[C]//51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Grapevine, Texas U. S.: American Institute of Aeronautics and Astronautics, 2013.