现代无人船具有体积小、质量轻等特点,然而有限的船舶空间却限制了天线的数量、高度和质量。液体天线凭借小型化、轻型化、可重构等特点有望成为新型船舶通信天线。经过20几年的发展,形成了液体金属天线、水天线、油、有机溶剂天线等类型。在液体天线中,海水导体天线的研究最为系统全面。以海水单极子天线为例,阐述了其天线特性,分析了不同种类海水单极子天线的技术特点,总结了影响海水天线辐射特性的关键因素,最后对海水天线未来研究方向提出几点建议。研究成果对未来海上无人装备的通信天线研究有一定的参考意义。
Modern unmanned ships have the characteristics of small size and light weight, but the limited ship space limits the number, height and quality of antennas. Liquid antenna is expected to be a new type of ship communication antenna due to its characteristics of miniaturization, lightness and reconfiguration. After more than 20 years of development, a variety of antenna types such as liquid metal antenna, water antenna, oil and organic solvent antenna have been formed. Among the liquid antennas, the research of seawater conductor antenna is the most systematic and comprehensive. Taking the seawater monopole antenna as an example, this paper describes its characteristics, analyzes the technical characteristics of different kinds of seawater monopole antenna, summarizes the key factors affecting the radiation characteristics of seawater antenna, and finally puts forward some suggestions for the future research direction of seawater antenna. The research results have a certain reference significance for the future research of communication antenna of unmanned equipment at sea.
2025,47(9): 9-14 收稿日期:2024-6-2
DOI:10.3404/j.issn.1672-7649.2025.09.002
分类号:U674
基金项目:海军工程大学自主研发计划项目(2023503090)
作者简介:张鑫(2000-),男,硕士研究生, 研究方向为无线通信
参考文献:
[1] 周健, 雷宏图, 刘陈利. 无人艇天线桅杆初探[C]//全国天线年会论文集. 中国昆明, 2019.
[2] KINGSLEY S P, O'KEEFE S G. Beam steering and monopulse processing of probe-fed dielectric resonator antennas[J]. IEE Proceedings-Radar, Sonar and Navigation, 1999, 146(3): 121-125.
[3] HUANG Y, XING L, SONG C, et al. Liquid antennas: Past, present and future[J]. IEEE Open Journal of Antennas and Propagation, 2021(2): 473-487.
[4] 吕华庆. 物理海洋学基础 [M]. 北京: 海洋出版社, 2012.
[5] XING L, HUANG Y, XU Q, et al. A broadband hybrid water antenna for hand-portable applications[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 174-177.
[6] HUA C Z, HU Z X, SHEN Z X. Reconfigurable water antennas[C]//2014 IEEE Conference on Antenna Measurements & App lications (CAMA), Antibes Juan-les-Pins, France, 2014.
[7] 钱雅惠. 宽带高效率的混合液体天线[D]. 广州: 华南理工大学, 2017.
[8] KING R W P, WU T T. The imperfectly conducting cylindrical transmitting antenna[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(5): 524-34.
[9] HUA C Z, SHEN Z X, LU J. High-efficiency sea-water monopole antenna for maritime wireless communications[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 5968-5973.
[10] PARASCHAKIS E, FAYAD H, RECORD P. Ionic liquid antenna[C]//IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, Singapore, 2005.
[11] FAYAD H, RECORD P. Wideband saline-water antenna [C]//IEE Wideband and Multi-band Antennas and Arrays, Birmingham, UK, 2005.
[12] FAYAD H, RECORD P. Broadband liquid antenna[J]. Electronics Letters, 2006, 42(3): 133-134.
[13] 杨卓. 对海水天线的初步研究[J]. 舰船电子工程, 2011, 31(12): 101-103.
[14] XING L, HUANG Y, SHEN Y, et al. Further investigation on water antennas[J]. IET Microwaves, Antennas & Propagation, 2015, 9(8): 735–741.
[15] 田加胜, 周新蓉, 石坚. 海水天线电磁仿真与设计-研究[C]//全国微波毫米波会议论文集, 中国合肥, 2015.
[16] PENG Z, LIANG X, ZHU W, et al. Metal-loaded seawater antenna with high radiation efficiency and wideband characteristics[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1671-1674.
[17] XING L, MENG X, YANG L, et al. A wideband water antenna for WiFi applications[C]//2018 International Workshop on Antenna Technology (iWAT), Nanjing, China, 2018.
[18] PHAN D, JUNG C. Optically transparent seawater monopole antenna with high radiation efficiency for WLAN applications[J]. Electronics Letters, 2019, 55(24): 1269-1271.
[19] TAM D W S. Electrolytic fluid antenna with signal enhancer[P]. US: US8368605B1, 2013.
[20] TAM D W S. Electrolytic fluid antenna[P]. US: US8169372B1, 2012.
[21] HUA C Z, SHEN Z X. Shunt-excited sea-water monopole antenna of high efficiency[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 5185-5190.
[22] HUA C Z, SHEN Z X. Sea-water half-loop antenna for maritime wireless communications[C]//2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), Bali, Indonesia, 2015.
[23] MITSUBISHI ELECTRIC CORPORATION. Mitsubishi electric's sea aerial antenna uses seawater plume [EB/OL]. https://www.mitsubishielectric.com/news/2016/0127. html.
[24] 三菱电机株式会社. 天线装置[P]. 中国: 105940555A. 2016.
[25] QIAN Y H, CHU Q X. A broadband hybrid monopole-dielectric resonator water antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 360-363.
[26] WANG M, CHU Q X. High-efficiency and wideband coaxial dual-tube hybrid monopole water antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 799-802.
[27] PAN X, HU Z, ZHENG M, et al. A UHF sea-water array antenna for maritime wireless communications[C]//12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 2018.
[28] XING L, ZHU J, XU Q, et al. A circular beam-steering antenna with parasitic water reflectors[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(10): 2140-2144.