本文提出一种内嵌粗糙弯曲颈部的赫姆霍兹可调性水下吸声超表面,该结构是在金属六边形赫姆霍兹谐振器中引入橡胶涂层和粗糙弯曲金属颈部,可以实现水下低频宽带高效吸声。与传统的谐振器相比,该超表面单元的吸声峰值对应的频率可低至151 Hz,并且有限元和理论模型计算的吸声系数基本吻合。固定超表面单元的外部几何参数不变,调整内部几何参数(橡胶涂层厚度和内嵌颈部相对粗糙度等),以实现完美声学超表面的频率可调性。为实现工程应用中的宽带吸声性能,本文将4个超表面单元共面平行排列形成复合声学超表面。厚度为50 mm的复合吸声结构在75~201 Hz的频率范围内,实现了带宽为126 Hz的低频宽带高效吸声(吸声系数>0.8)。本文研究对水声超表面的设计和水下低频噪声控制具有重要意义。
In this paper, a flexible underwater sound absorption metasurface with embedded rough curved neck is proposed. This structure is based on the introduction of rubber coating and rough curved metal neck in metal hexagonal Helmholtz resonator, which can realize high efficiency underwater low frequency broadband sound absorption. Compared with the traditional resonator, the frequency corresponding to the peak absorption of the metasurface unit can be as low as 151 Hz, and the absorption coefficient calculated by the finite element is basically consistent with the theoretical model. The external geometric parameters of the fixed metasurface element are unchanged, and the internal geometric parameters (thickness of the rubber coating and relative roughness of the embedded neck, etc.) are adjusted to achieve the frequency tunability of the perfect acoustic metasurface. In order to achieve wide-band sound absorption performance in engineering applications, four metasurface elements are arranged in parallel to form a compound acoustic metasurface. The composite sound absorption structure with a thickness of 50 mm achieves a low frequency broadband and efficient sound absorption with a bandwidth of 126 Hz (sound absorption coefficient >0.8) in the frequency range of 75~201 Hz. The research in this paper is of great significance to the design of underwater acoustic metasurface and the control of underwater low frequency noise.
2025,47(9): 21-26 收稿日期:2024-7-16
DOI:10.3404/j.issn.1672-7649.2025.09.004
分类号:U668
基金项目:江苏省自然科学基金资助项目(BK20230664);中国博士后科学基金(2024M751543);声场声信息国家重点实验室开放课题研究基金(SKLA202403)
作者简介:徐涛(2003-),男,本科在读,研究方向为噪声与振动控制
参考文献:
[1] 王术新, 王斌, 黄兴华. 船舶机舱噪声控制[J]. 舰船科学技术, 2003, 25(5): 29-30+39.
[2] 罗忠, 朱锡, 林志驼, 等. 水下吸声覆盖层结构及吸声机理研究进展[J]. 舰船科学技术, 2009, 31(8): 23-30.
[3] 马大猷. 噪声与振动控制工程手册[M]. 北京. 机械工业出版社, 2002.
[4] 吴九汇, 马富银, 张思文, 等. 声学超材料在低频减振降噪中的应用评述[J]. 机械工程学报, 2016, (13): 68-78.
[5] XU Y, HONG Y, LI M, et al. Underwater low-frequency sound absorption performance and broadband absorption design of membrane-type acoustic metamaterials[J]. Applied Acoustics, 2023, 214: 109676.
[6] 马承志, 王立博, 吴九汇. 水下吸声超材料的质量集中效应[J]. 西安交通大学学报, 2021, 55(12): 163-171.
[7] ZHAO H , WEN J , YU D , et al. Low-frequency acoustic absorption of localized resonances: experiment and theory[J]. Journal of Applied Physics, 2010, 107(2): 1734.
[8] ZHOU X, WANG X, XING F. Ultrathin acoustic metamaterial as super absorber for broadband low-frequency underwater sound[J]. Scientific reports, 2023, 13(1): 7983.
[9] FENG J, LIANG Q, DOU Y, et al. Ultrathin underwater sound-absorbing metasurface by coupling local resonance with cavity resonance[J]. Physical Review Applied, 2022, 18(3): 034054.
[10] LI Y, YAN J, PENG Y. Multiscale porous with coiled-up channel for low-frequency broadband sound absorption[J]. International Journal of Mechanical Sciences, 2022, 232: 107622.
[11] DUAN M, YU C, XIN F, et al. Tunable underwater acoustic metamaterials via quasi-helmholtz resonance: from low-frequency to ultra-broadband[J]. Applied Physics Letters, 2021, 118(7).
[12] WANG Z, HUANG Y, ZHANG X, et al. Broadband underwater sound absorbing structure with gradient cavity shaped polyurethane composite array supported by carbon fiber honeycomb[J]. Journal of Sound and Vibration, 2020, 479: 115375.
[13] ZHANG S, SONG A, WANG S, et al. A compact low-frequency sound absorption metastructure realized by resonators with wavy bending necks[J]. Journal of Physics D: Applied Physics, 2023, 57(3): 035302.